skip to main content


Title: Glacial Inception in Marine Isotope Stage 19: An Orbital Analog for a Natural Holocene Climate
Abstract

The Marine Isotope Stage 19c (MIS19c) interglaciation is regarded as the best orbital analog to the Holocene. The close of MIS19c (~777,000 years ago) thus serves as a proxy for a contemporary climate system unaffected by humans. Our global climate model simulation driven by orbital parameters and observed greenhouse gas concentrations at the end of MIS19c is 1.3 K colder than the reference pre-industrial climate of the late Holocene (year 1850). Much stronger cooling occurs in the Arctic, where sea ice and year-round snow cover expand considerably. Inferred regions of glaciation develop across northeastern Siberia, northwestern North America, and the Canadian Archipelago. These locations are consistent with evidence from past glacial inceptions and are favored by atmospheric circulation changes that reduce ablation of snow cover and increase accumulation of snowfall. Particularly large buildups of snow depth coincide with presumed glacial nucleation sites, including Baffin Island and the northeast Canadian Archipelago. These findings suggest that present-day climate would be susceptible to glacial inception if greenhouse gas concentrations were as low as they were at the end of MIS 19c.

 
more » « less
NSF-PAR ID:
10154092
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
8
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A climate/vegetation model simulates episodic wetter and drier periods at the 21,000-y precession period in eastern North Africa, the Arabian Peninsula, and the Levant over the past 140,000 y. Large orbitally forced wet/dry extremes occur during interglacial time, ∼130 to 80 ka, and conditions between these two extremes prevail during glacial time, ∼70 to 15 ka. Orbital precession causes high seasonality in Northern Hemisphere (NH) insolation at ∼125, 105, and 83 ka, with stronger and northward extended summer monsoon rains in North Africa and the Arabian Peninsula and increased winter rains in the Mediterranean Basin. The combined effects of these two seasonally distinct rainfall regimes increase vegetation and narrow the width of the Saharan–Arabian desert and semidesert zones. During the opposite phase of the precession cycle (∼115, 95, and 73 ka), NH seasonality is low, and decreased summer insolation and increased winter insolation cause monsoon and storm track rains to decrease and the width of the desert zone to increase. During glacial time (∼70 to 15 ka), forcing from large ice sheets and lowered greenhouse gas concentrations combine to increase winter Mediterranean storm track precipitation; the southward retreat of the northern limit of summer monsoon rains is relatively small, thereby limiting the expansion of deserts. The lowered greenhouse gas concentrations cause the near-equatorial zone to cool and reduce convection, causing drier climate with reduced forest cover. At most locations and times, the simulations agree with environmental observations. These changing regional patterns of climate/vegetation could have influenced the dispersal of early humans through expansions and contractions of well-watered corridors.

     
    more » « less
  2. Climate warming is altering the persistence, timing, and distribution of permafrost and snow cover across the terrestrial northern hemisphere. These cryospheric changes have numerous consequences, not least of which are positive climate feedbacks associated with lowered albedo related to declining snow cover, and greenhouse gas emissions from permafrost thaw. Given the large land areas affected, these feedbacks have the potential to impact climate on a global scale. Understanding the magnitudes and rates of changes in permafrost and snow cover is therefore integral for process understanding and quantification of climate change. However, while permafrost and snow cover are largely controlled by climate, their distributions and climate impacts are influenced by numerous interrelated ecosystem processes that also respond to climate and are highly heterogeneous in space and time. In this perspective we highlight ongoing and emerging changes in ecosystem processes that mediate how permafrost and snow cover interact with climate. We focus on larch forests in northeastern Siberia, which are expansive, ecologically unique, and studied less than other Arctic and subarctic regions. Emerging fire regime changes coupled with high ground ice have the potential to foster rapid regional changes in vegetation and permafrost thaw, with important climate feedback implications. 
    more » « less
  3. Abstract

    Snow is critically important to the energy budget, biogeochemistry, ecology, and people of the Arctic. While climate change continues to shorten the duration of the snow cover period, snow mass (the depth of the snow pack) has been increasing in many parts of the Arctic. Previous work has shown that deeper snow can rapidly thaw permafrost and expose the large amounts of ancient (legacy) organic matter contained within it to microbial decomposition. This process releases carbonaceous greenhouse gases but also nutrients, which promote plant growth and carbon sequestration. The net effect of increased snow depth on greenhouse gas emissions from Arctic ecosystems remains uncertain. Here we show that 25 years of snow addition turned tussock tundra, one of the most spatially extensive Arctic ecosystems, into a year‐round source of ancient carbon dioxide. More snow quadrupled the amount of organic matter available to microbial decomposition, much of it previously preserved in permafrost, due to deeper seasonal thaw, soil compaction and subsidence as well as the proliferation of deciduous shrubs that lead to 10% greater carbon uptake during the growing season. However, more snow also sustained warmer soil temperatures, causing greater carbon loss during winter (+200% from October to May) and year‐round. We find that increasing snow mass will accelerate the ongoing transformation of Arctic ecosystems and cause earlier‐than‐expected losses of climate‐warming legacy carbon from permafrost.

     
    more » « less
  4. To investigate the effect of a winter with decreased snow cover on greenhouse gas emissions, we experimentally removed snowfall from a small dystrophic lake in northern Wisconsin. As a comparative study, we were able to explore the role of light in under-ice gas dynamics and spring emissions in dimictic lakes. This dataset contains greenhouse gas and temperature/dissolved oxygen profile data collected on South Sparkling and Trout Bog during the winter of 2020 through the winter of 2021. Data were collected between 09 January 2020 and 13 April 2021 in the deep hole of both bogs. Dissolved greenhouse gas concentrations of carbon dioxide and methane were measured using the headspace equilibrium method. 
    more » « less
  5. Abstract

    Mountain glaciers are retreating rapidly due to climate change, leading to the formation of downstream lakes. However, little is known about the physical and biogeochemical conditions in these lakes across a range of glacial influence. We surveyed alpine lakes fed by both glacial and snowpack meltwaters and those fed by snowpack alone to compare nutrient concentrations, stoichiometry, water clarity, chlorophyll, and zooplankton communities. Total phosphorus (TP) and soluble reactive phosphorus were two times higher in glacial lakes than in non‐glacial lakes, while nitrate concentrations were three times higher. However, organic carbon concentrations in glacial lakes were two times lower than in non‐glacial lakes. The carbon‐to‐phosphorus ratio and the nitrogen‐to‐phosphorus ratio of lake seston increased with water clarity in glacial lakes, suggesting that turbidity from glacial flour increases light limitation and increases stoichiometric food quality for zooplankton in newly formed lakes. However, chlorophyllaconcentrations did not differ between lake types. Through structural equation modeling, we found that glaciers exhibit a bidirectional association with nitrate and TP concentrations, perhaps mediated through landscape vegetation and lake clarity. Zooplankton communities in high‐turbidity glacial lakes were largely composed of cyclopoid copepods and rotifers (i.e., non‐filter feeders), while non‐glacial lakes tended to be dominated by calanoid copepods and cladocerans (i.e., filter feeders). Our results show that glacier‐influenced lakes have biogeochemical and ecological characteristics distinct from snow‐fed mountain lakes. Sustained studies are needed to assess the dynamics of these unique features as the influence of the alpine cryosphere fades under ongoing climate change.

     
    more » « less