skip to main content


Title: Transparent-to-dark photo- and electrochromic gels
Abstract

Smart windows in which the transmittance can be controlled on demand are a promising solution for the reduction of energy use in buildings. Windows are often the most energy inefficient part of a building, and so controlling the transmittance has the potential to significantly improve heating costs. Whilst numerous approaches exist, many suitable materials are costly to manufacture and process and so new materials could have a significant impact. Here we describe a gel-based device which is both photo- and electrochromic. The gel matrix is formed by the self-assembly of a naphthalene diimide. The radical anion of the naphthalene diimide can be formed photo or electrochemically, and leads to a desirable transition from transparent to black. The speed of response, low potential needed to generate the radical anion, cyclability of the system, temperature stability and low cost mean these devices may be suitable for applications in smart windows.

 
more » « less
NSF-PAR ID:
10154114
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Chemistry
Volume:
1
Issue:
1
ISSN:
2399-3669
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Silica-based aerogels are a promising low-cost solution for improving the insulation efficiency of single-pane windows and reducing the energy consumption required for space heating and cooling. Two key material properties required are high porosity and small pore sizes, which lead to low thermal conductivity and high optical transparency, respectively. However, porosity and pore size are generally directly linked, where high porosity materials also have large pore sizes. This is unfavorable as large pores scatter light, resulting in reduced transmittance in the visible regime. In this work, we utilized preformed silica colloids to explore methods for reducing pore size while maintaining high porosity. The use of preformed colloids allows us to isolate the effect of solution conditions on porous gel network formation by eliminating simultaneous nanoparticle growth and aggregation found when using typical sol–gel molecular-based silica precursors. Specifically, we used in situ synchrotron-based small-angle x-ray scattering during gel formation to better understand how pH, concentration, and colloid size affect particle aggregation and pore structure. Ex situ characterization of dried gels demonstrates that peak pore widths can be reduced from 15 to 13 nm, accompanied by a narrowing of the overall pore size distribution, while maintaining porosities of 70%–80%. Optical transparency is found to increase with decreasing pore sizes while low thermal conductivities ranging from 95 +/− 13 mW/m K are maintained. Mechanical performance was found to depend primarily on effective density and did not show a significant dependence on solution conditions. Overall, our results provide insights into methods to preserve high porosity in nanoparticle-based aerogels while improving optical transparency.

     
    more » « less
  2. Abstract

    Materials with dynamically controlled electronic structures (i.e., upon external stimuli) are at the forefront of the renewable energy sector with applications as memory devices, smart supercapacitors, programmable solar cells, and field‐effect transistors. Moreover, their continued development as device components is critical for the field of optoelectronics since their performance is comparable, or could even surpass, the current benchmarks. Adaptive electronic properties are the main focus of this review that discusses recent developments in the modulation of electronic behavior that can be tuned using external stimuli in metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), primarily inorganic hybrids, polymers, and graphitic‐type materials. Triggers to achieve “dynamic” behavior discussed within this manuscript are primarily light‐based switches that include different classes of photochromic molecules such as naphthalene diimide, viologen, diarylethene, azobenzene, and spiropyran. The effect of material dimensionality and photoswitch connectivity achieved through integration of photochromic moieties inside 0D, 1D, 2D, and 3D hybrid matrices is discussed. This review showcases the prospects of advancing the material and energy landscapes through employment of structural motifs with adaptive electronic structures occurring as a function of their dimensionality and connectivity.

     
    more » « less
  3. null (Ed.)
    The photosensitized chemistry of three aromatic ketones (xanthone, flavone, and acetophenone) and also of secondary organic aerosol (SOA) arising from the photo-oxidation of naphthalene was investigated by means of transient absorption spectroscopy. Halide ions were selected to probe the reactivity of the generated triplet states. The quenching rate constants ranged from 10 9 M −1 s −1 with iodide ions to less than 10 5 M −1 s −1 with chloride ions. The halide-triplet state interactions produced the corresponding radical anion (X 2 ˙ − ) along with halogenated and more oxidized organic compounds as identified by liquid chromatography and mass spectrometry. Deoxygenated naphthalene SOA solutions showed strong transient absorption at 420 nm when excited at 355 nm, and were also quenched by iodide ions similar to the single compound experiments indicating that compounds in naphthalene SOA can act as photosensitizers. Combining the study of these individual and known photosensitizers with those formed in the atmosphere (in this case through the oxidation of naphthalene) demonstrates that tropospheric photosensitization may involve a large variety of compounds of primary or secondary nature and will introduce new, unconsidered chemical pathways that impact atmospheric multiphase chemistry. 
    more » « less
  4. Abstract

    Smart windows are energy‐efficient windows whose optical transparency can be switched between highly transparent and opaque states in response to incident solar illumination. Transparent and conductive metal nanomesh (NM) films are promising candidates for thermochromic smart windows due to their excellent thermal conductivity, high optical transparency at near infrared wavelengths, and outstanding stability. In this study, ZnO/Au/Al2O3NM films with periodicities of 200 and 370 nm are reported. The ZnO/Au/Al2O3NM film with a 370 nm periodicity exhibits a transmittance over 90% at 550 nm and sheet resistance lower than 20 Ω sq−1. Based on a standard figure of merit, this structure outperforms current state‐of‐the‐art NM films. Here, the integration of ZnO/Au/Al2O3NM films into a thermochromic perovskite smart window is also demonstrated. The transparency of the smart window structure is manipulated by transient resistive heating to trigger the thermochromic transition to the opaque state, which can be then maintained solely by 1‐sun, AM 1.5 G illumination. This climate‐adaptive, low power‐activated, and fast‐switching smart window structure opens new pathways toward its practical application in the real world.

     
    more » « less
  5. The restricted active space spin–flip (RAS-SF) formalism is a particular form of single-reference configuration interaction that can describe some forms of strong correlation at a relatively low cost and which has recently been formulated for the description of charge-transfer excited states. Here, we introduce both equilibrium and nonequilibrium versions of a state-specific solvation correction for vertical transition energies computed using RAS-SF wave functions, based on the framework of a polarizable continuum model (PCM). Ground-state polarization is described using the solvent’s static dielectric constant and in the nonequilibrium solvation approach that polarization is modified upon vertical excitation using the solvent’s optical dielectric constant. Benchmark calculations are reported for well-studied models of photo-induced charge transfer, including naphthalene dimer, C 2 H 4 ⋯C 2 F 4 , pentacene dimer, and perylene diimide (PDI) dimer, several of which are important in organic photovoltaic applications. For the PDI dimer, we demonstrate that the charge-transfer character of the excited states is enhanced in the presence of a low-dielectric medium (static dielectric constant ɛ 0 = 3) as compared to a gas-phase calculation ( ɛ 0 = 1). This stabilizes mechanistic traps for singlet fission and helps to explain experimental singlet fission rates. We also examine the effects of nonequilibrium solvation on charge-separated states in an intramolecular singlet fission chromophore, where we demonstrate that the energetic ordering of the states changes as a function of solvent polarity. The RAS-SF + PCM methodology that is reported here provides a framework to study charge-separated states in solution and in photovoltaic materials. 
    more » « less