skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Coexistence of metallic and nonmetallic properties in the pyrochlore Lu2Rh2O7
Abstract

Transition metal oxides of the 4dand 5dblock have recently become the targets of materials discovery, largely due to their strong spin–orbit coupling that can generate exotic magnetic and electronic states. Here, we report the high-pressure synthesis of Lu2Rh2O7, a new cubic pyrochlore oxide based on 4d5Rh4+, and characterizations via thermodynamic, electrical transport, and muon spin relaxation measurements. Magnetic susceptibility measurements reveal a large temperature-independent Pauli paramagnetic contribution, while heat capacity shows an enhanced Sommerfeld coefficient,γ = 21.8(1) mJ/mol-Rh K2. Muon spin relaxation measurements confirm that Lu2Rh2O7remains paramagnetic down to 2 K. Taken in combination, these three measurements suggest that Lu2Rh2O7is a correlated paramagnetic metal with a Wilson ratio ofRW = 2.5. However, electric transport measurements present a striking contradiction as the resistivity of Lu2Rh2O7is observed to monotonically increase with decreasing temperature, indicative of a nonmetallic state. Furthermore, although the magnitude of the resistivity is that of a semiconductor, the temperature dependence does not obey any conventional form. Thus, we propose that Lu2Rh2O7may belong to the same novel class of non-Fermi liquids as the nonmetallic metal FeCrAs.

 
more » « less
PAR ID:
10154121
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Materials
Volume:
4
Issue:
1
ISSN:
2397-4648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Collective behaviour of electrons, frustration induced quantum fluctuations and entanglement in quantum materials underlie some of the emergent quantum phenomena with exotic quasi-particle excitations that are highly relevant for technological applications. Herein, we present our thermodynamic and muon spin relaxation measurements, complemented by ab initio density functional theory and exact diagonalization results, on the recently synthesized frustrated antiferromagnet Li4CuTeO6, in which Cu2+ions (S= 1/2) constitute disordered spin chains and ladders along the crystallographic [101] direction with weak random inter-chain couplings. Our thermodynamic experiments detect neither long-range magnetic ordering nor spin freezing down to 45 mK despite the presence of strong antiferromagnetic interaction between Cu2+moments leading to a large effective Curie-Weiss temperature of − 154 K. Muon spin relaxation results are consistent with thermodynamic results. The temperature and magnetic field scaling of magnetization and specific heat reveal a data collapse pointing towards the presence of random-singlets within a disorder-driven correlated and dynamic ground-state in this frustrated antiferromagnet.

     
    more » « less
  2. Abstract

    The structures and magnetic properties of four paramagnetic bis(carbene)niobium and a diamagnetic monocarbene complex are described. Crystallographic studies show solvated crystals of NbCl4(IMes)2(1 ⋅ C7H7), NbCl3(IMes)2(2 ⋅ Et2Oand2 ⋅ C5H12), and NbOCl2(IMes)2(3 ⋅ Et2O) adopt distorted structures consistent with second‐order Jahn‐Teller carbene‐halide interactions. Magnetic studies indicate13display appreciable temperature‐independent paramagnetism contributions to theirS=1/2, 1, and 1/2 spin ground states, respectively. Slow magnetization relaxation dynamics are seen below ca. 6 and 50 K, which are ascribed as arising from Raman and direct/Raman pathways for1and3, respectively.

     
    more » « less
  3. Abstract

    Dinitrogen coordination to iron centers underpins industrial and biological fixation in the Haber–Bosch process and by the FeM cofactors in the nitrogenase enzymes. The latter employ local high‐spin metal centers; however, iron–dinitrogen coordination chemistry remains dominated by low‐valent states, contrasting the enzyme systems. Here, we report a high‐spin mixed‐valentcis‐(μ‐1,2‐dinitrogen)diiron(I/II) complex [(FeBr)2(μ‐N2)Lbis](2), where [Lbis]is a bis(β‐diketiminate) cyclophane. Field‐applied Mössbauer spectra, dc and ac magnetic susceptibility measurements, and computational methods support a delocalizedS=7/2Fe2N2unit withD=−5.23 cm−1and consequent slow magnetic relaxation.

     
    more » « less
  4. Abstract

    Dinitrogen coordination to iron centers underpins industrial and biological fixation in the Haber–Bosch process and by the FeM cofactors in the nitrogenase enzymes. The latter employ local high‐spin metal centers; however, iron–dinitrogen coordination chemistry remains dominated by low‐valent states, contrasting the enzyme systems. Here, we report a high‐spin mixed‐valentcis‐(μ‐1,2‐dinitrogen)diiron(I/II) complex [(FeBr)2(μ‐N2)Lbis](2), where [Lbis]is a bis(β‐diketiminate) cyclophane. Field‐applied Mössbauer spectra, dc and ac magnetic susceptibility measurements, and computational methods support a delocalizedS=7/2Fe2N2unit withD=−5.23 cm−1and consequent slow magnetic relaxation.

     
    more » « less
  5. Abstract

    Single crystals of the quasi-skutterudite compounds Ca3(Ir1-xRhx)4Sn13(3–4–13) were synthesized by flux growth and characterized by x-ray diffraction, energy dispersive x-ray spectroscopy, magnetization, resistivity, and radio frequency magnetic susceptibility techniques. The coexistence and competition between the charge density wave (CDW) and superconductivity was studied by varying the Rh/Ir ratio. The superconducting transition temperature,Tc, varies from 7 K in pure Ir (x = 0) to 8.3 K in pure Rh (x = 1). Temperature-dependent electrical resistivity reveals monotonic suppression of the CDW transition temperature,TCDW(x). The CDW starts in pure Ir,x = 0, atTCDW≈ 40 K and extrapolates roughly linearly to zero atxc0.53–0.58 under the superconducting dome. Magnetization and transport measurements show a significant influence of CDW on superconducting and normal states. Meissner expulsion is substantially reduced in the CDW region, indicating competition between the CDW and superconductivity. The low-temperature resistivity is higher in the CDW part of the phase diagram, consistent with the reduced density of states due to CDW gapping. Its temperature dependence just aboveTcshows signs of non-Fermi liquid behavior in a cone-like composition pattern. We conclude that the Ca3(Ir1-xRhx)4Sn13alloy is a good candidate for a composition-driven quantum critical point at ambient pressure.

     
    more » « less