skip to main content


Title: Fingerprints of an orbital-selective Mott phase in the block magnetic state of BaFe2Se3 ladders
Abstract

Resonant Inelastic X-Ray Scattering (RIXS) experiments on the iron-based ladder BaFe2Se3unveiled an unexpected two-peak structure associated with local orbital (dd) excitations in a block-type antiferromagnetic phase. A mixed character between correlated band-like and localized excitations was also reported. Here, we use the density matrix renormalization group method to calculate the momentum-resolved charge- and orbital-dynamical response functions of a multi-orbital Hubbard chain. Remarkably, our results qualitatively resemble the BaFe2Se3RIXS data, while also capturing the presence of long-range magnetic order as found in neutron scattering, only when the model is in an exotic orbital-selective Mott phase (OSMP). In the calculations, the experimentally observed zero-momentum transfer RIXS peaks correspond to excitations between itinerant and Mott insulating orbitals. We provide experimentally testable predictions for the momentum-resolved charge and orbital dynamical structures, which can provide further insight into the OSMP regime of BaFe2Se3.

 
more » « less
NSF-PAR ID:
10154141
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
2
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We studied the magnetic excitations in the quasi-one-dimensional (q-1D) ladder subsystem of Sr 14−x Ca x Cu 24 O 41 (SCCO) using Cu L 3 -edge resonant inelastic X-ray scattering (RIXS). By comparing momentum-resolved RIXS spectra with high ( x  = 12.2) and without ( x  = 0) Ca content, we track the evolution of the magnetic excitations from collective two-triplon (2 T) excitations ( x  = 0) to weakly-dispersive gapped modes at an energy of 280 meV ( x  = 12.2). Density matrix renormalization group (DMRG) calculations of the RIXS response in the doped ladders suggest that the flat magnetic dispersion and damped excitation profile observed at x  = 12.2 originates from enhanced hole localization. This interpretation is supported by polarization-dependent RIXS measurements, where we disentangle the spin-conserving Δ S  = 0 scattering from the predominant Δ S  = 1 spin-flip signal in the RIXS spectra. The results show that the low-energy weight in the Δ S  = 0 channel is depleted when Sr is replaced by Ca, consistent with a reduced carrier mobility. Our results demonstrate that off-ladder impurities can affect both the low-energy magnetic excitations and superconducting correlations in the CuO 4 plaquettes. Finally, our study characterizes the magnetic and charge fluctuations in the phase from which superconductivity emerges in SCCO at elevated pressures. 
    more » « less
  2. Abstract

    Search for novel electronically ordered states of matter emerging near quantum phase transitions is an intriguing frontier of condensed matter physics. In ruthenates, the interplay between Coulomb correlations among the 4delectronic states and their spin-orbit interactions, lead to complex forms of electronic phenomena. Here we investigate the double layered Sr3(Ru1−xMnx)2O7and its doping-induced quantum phase transition from a metal to an antiferromagnetic Mott insulator. Using spectroscopic imaging with the scanning tunneling microscope, we visualize the evolution of the electronic states in real- and momentum-space. We find a partial-gap at the Fermi energy that develops with doping to form a weak Mott insulating state. Near the quantum phase transition, we discover a spatial electronic reorganization into a commensurate checkerboard charge order. These findings bear a resemblance to the universal charge order in the pseudogap phase of cuprates and demonstrate the ubiquity of charge order that emanates from doped Mott insulators.

     
    more » « less
  3. Abstract

    Excitonic insulators are usually considered to form via the condensation of a soft charge mode of bound electron-hole pairs. This, however, presumes that the soft exciton is of spin-singlet character. Early theoretical considerations have also predicted a very distinct scenario, in which the condensation of magnetic excitons results in an antiferromagnetic excitonic insulator state. Here we report resonant inelastic x-ray scattering (RIXS) measurements of Sr3Ir2O7. By isolating the longitudinal component of the spectra, we identify a magnetic mode that is well-defined at the magnetic and structural Brillouin zone centers, but which merges with the electronic continuum in between these high symmetry points and which decays upon heating concurrent with a decrease in the material’s resistivity. We show that a bilayer Hubbard model, in which electron-hole pairs are bound by exchange interactions, consistently explains all the electronic and magnetic properties of Sr3Ir2O7indicating that this material is a realization of the long-predicted antiferromagnetic excitonic insulator phase.

     
    more » « less
  4. Fe-based superconductors exhibit a diverse interplay between charge, orbital, and magnetic ordering. Variations in atomic geometry affect electron hopping between Fe atoms and the Fermi surface topology, influencing magnetic frustration and the pairing strength through changes of orbital overlap and occupancies. Here, we experimentally demonstrate a systematic approach to realize superconductivity without chemical doping in BaFe2As2, employing geometric design within an epitaxial heterostructure. We control both tetragonality and orthorhombicity in BaFe2As2through superlattice engineering, which we experimentally find to induce superconductivity when the As−Fe−As bond angle approaches that in a regular tetrahedron. This approach to superlattice design could lead to insights into low-dimensional superconductivity in Fe-based superconductors.

     
    more » « less
  5. Abstract The superconducting critical temperature T c of intercalated iron-selenide superconductor (Li,Fe)OHFeSe (FeSe11111) can be increased to 42 from 8 K of bulk FeSe. It shows remarkably similar electronic properties as the high- T c monolayer FeSe and provides a bulk counterpart to investigate the origin of enhanced superconductivity. Unraveling the nature of excitations is crucial for understanding the pairing mechanism in high- T c iron selenides. Here we use resonant inelastic x-ray scattering (RIXS) to investigate the excitations in FeSe11111. Our high-quality data exhibit several Raman-like excitations, which are dispersionless and isotropic in momentum transfer in both superconducting 28 K and 42 K samples. Using atomic multiplet calculations, we assign the low-energy ~0.3 and 0.7 eV Raman peaks as local e g  −  e g and e g  −  t 2 g orbital excitations. The intensity of these two features decreases with increasing temperature, suggesting a dominating contribution of the orbital fluctuations. Our results highlight the importance of the orbital degree of freedom for high- T c iron selenides. 
    more » « less