skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Viral rescue of magnocellular vasopressin cells in adolescent Brattleboro rats ameliorates diabetes insipidus, but not the hypoaroused phenotype
Abstract Dysregulated arousal often accompanies neurodevelopmental disorders such as attention deficit hyperactivity disorder and autism spectrum disorder. Recently, we have found that adolescent homozygous Brattleboro (Hom) rats, which contain a mutation in the arginine vasopressin (AVP) gene, exhibit lower behavioral arousal than their heterozygous (Het) littermates in the open field test. This hypoaroused phenotype could be due to loss of AVP in magnocellular cells that supply AVP to the peripheral circulation and project to limbic structures or parvocellular cells that regulate the stress axis and other central targets. Alternatively, hypoarousal could be a side effect of diabetes insipidus – polydipsia and polyuria seen in Hom rats due to loss of AVP facilitation of water reabsorption in the kidney. We developed a viral-rescue approach to “cure” magnocellular AVP cells of their Brattleboro mutation. Infusion of a recombinant adeno-associated virus (rAAV) containing a functionalAvpgene and promoter (rAAV-AVP) rescued AVP within magnocellular cells and fiber projections of the paraventricular nucleus of the hypothalamus (PVN) of male and female adolescent Hom rats. Furthermore, water intake was markedly reduced, ameliorating the symptoms of diabetes insipidus. In contrast, open field activity was unaffected. These findings indicate that the hyporaoused phenotype of adolescent Hom rats is not due to the loss of AVP function in magnocellular cells or a side effect of diabetes insipidus, but favors the hypothesis that central, parvocellular AVP mechanisms underlie the regulation of arousal during adolescence.  more » « less
Award ID(s):
1754878
PAR ID:
10154143
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The neuropeptide, arginine vasopressin (AVP), has been implicated in social communication across a diverse array of species. Many rodents communicate basic behavioral states with negative versus positive valence through high-pitched vocalizations above the human hearing range (ultrasonic vocalizations; USVs). Previous studies have found that Brattleboro (Bratt) rats, which have a mutation in the Avp gene, exhibit deficits in their USVs from the early postnatal period through adolescence, but the magnitude of this effect appears to decrease from the juvenile to adolescent phase. The present study tested whether Bratt rats continue to exhibit USV deficits in adulthood. USVs of adult male and female Bratt and wild type (WT) rats were recorded in two contexts: a novel environment (empty arena) and a social context (arena filled with bedding soiled by same-sex conspecifics). The number, frequency, and duration of 50 kHz USVs were quantified by DeepSqueak after validation with manual scoring. Twenty-two kHz measures were quantified by manual scoring because DeepSqueak failed to accurately detect USVs in this frequency range. Adult Bratt rats did not exhibit deficits in the number of 50 kHz USVs: male Bratt rats emitted similar 50 kHz USVs as male WT rats, whereas female Bratt rats emitted more USVs than female WT rats. USV frequency and duration were altered in adult Bratt rats, but in a context-dependent manner. Twenty-two kHz USVs were less affected by the Bratt mutation. The present study demonstrates how chronic AVP deficiency impacts social communication across the lifespan. The present findings reveal a complex role for AVP in vocal communication, whereby disruption to the Avp gene leads to sex-, context-, and developmental phase-specific effects on the quantity and spectrotemporal characteristics of rat USVs. 
    more » « less
  2. Abstract Gene therapy is a promising therapeutic approach for genetic and acquired diseases nowadays. Among DNA delivery vectors, recombinant adeno‐associated virus (rAAV) is one of the most effective and safest vectors used in commercial drugs and clinical trials. However, the current yield of rAAV biomanufacturing lags behind the necessary dosages for clinical and commercial use, which embodies a concentrated reflection of low productivity of rAAV from host cells, difficult scalability of the rAAV‐producing bioprocess, and high levels of impurities materialized during production. Those issues directly impact the price of gene therapy medicine in the market, limiting most patients’ access to gene therapy. In this context, the current practices and several critical challenges associated with rAAV gene therapy bioprocesses are reviewed, followed by a discussion of recent advances in rAAV‐mediated gene therapy and other therapeutic biological fields that could improve biomanufacturing if these advances are integrated effectively into the current systems. This review aims to provide the current state‐of‐the‐art technology and perspectives to enhance the productivity of rAAV while reducing impurities during production of rAAV. 
    more » « less
  3. Peri-adolescence is a critical developmental stage marked by profound changes in the valence of social interactions with parents and peers. We hypothesized that the oxytocin (OXT) and vasopressin (AVP) systems, known for influencing social behavior, would be involved in the maintenance and breaking of bonding behavior expressed by very early peri-adolescent males and females. In rodents, OXT is associated with mother–pup bonding and may promote social attachment to members of the natal territory. AVP, on the other hand, can act in contrasting ways to OXT and has been associated with aggression and territoriality. Specifically, we predicted that in peri-adolescent male and female juveniles of the biparental and territorial California mouse (Peromyscus californicus), a) OXT would increase the social preferences for the parents over unfamiliar age-matched peers (one male and one female), and b) AVP would break the parent-offspring bond and either increase time in the neutral chamber and/or approach to their unfamiliar and novel peers. We examined anxiety and exploratory behavior using an elevated plus maze and a novel object task as a control. Peri-adolescent mice were administered an acute intranasal (IN) treatment of 0.5 IU/kg IN AVP, 0.5 IU/kg IN OXT, or saline control; five minutes later, the behavioral tests were conducted. As predicted, we found that IN OXT enhanced social preference for parents; however, this was only in male and not female peri-adolescent mice. IN AVP did not influence social preference in either sex. These effects appear specific to social behavior and not anxiety, as neither IN OXT nor AVP influenced behavior during the elevated plus maze or novel object tasks. To our knowledge, this is the first evidence indicating that OXT may play a role in promoting peri-adolescent social preferences for parents and delaying weaning in males. 
    more » « less
  4. null (Ed.)
    Central auditory processing disorder (CAPD) is associated with difficulties hearing and processing acoustic information, as well as subsequent impacts on the development of higher-order cognitive processes (i.e., attention and language). Yet CAPD also lacks clear and consistent diagnostic criteria, with widespread clinical disagreement on this matter. As such, identification of biological markers for CAPD would be useful. A recent genome association study identified a potential CAPD risk gene, USH2A. In a homozygous state, this gene is associated with Usher syndrome type 2 (USH2), a recessive disorder resulting in bilateral, high-frequency hearing loss due to atypical cochlear hair cell development. However, children with heterozygous USH2A mutations have also been found to show unexpected low-frequency hearing loss and reduced early vocabulary, contradicting assumptions that the heterozygous (carrier) state is “phenotype free”. Parallel evidence has confirmed that heterozygous Ush2a mutations in a transgenic mouse model also cause low-frequency hearing loss (Perrino et al., 2020). Importantly, these auditory processing anomalies were still evident after covariance for hearing loss, suggesting a CAPD profile. Since usherin anomalies occur in the peripheral cochlea and not central auditory structures, these findings point to upstream developmental feedback effects of peripheral sensory loss on high-level processing characteristic of CAPD. In this study, we aimed to expand upon the mouse behavioral battery used in Perrino et al. (2020) by evaluating central auditory brain structures, including the superior olivary complex (SOC) and medial geniculate nucleus (MGN), in heterozygous and homozygous Ush2a mice. We found that heterozygous Ush2a mice had significantly larger SOC volumes while homozygous Ush2a had significantly smaller SOC volumes. Heterozygous mutations did not affect the MGN; however, homozygous Ush2a mutations resulted in a significant shift towards more smaller neurons. These findings suggest that alterations in cochlear development due to USH2A variation can secondarily impact the development of brain regions important for auditory processing ability. 
    more » « less
  5. Background and aimsSYNGAP1-related disorder (SYNGAP1-RD) is a prevalent genetic form of Autism Spectrum Disorder and Intellectual Disability (ASD/ID) and is caused byde novoor inherited mutations in one copy of theSYNGAP1gene. In addition to ASD/ID, SYNGAP1 disorder is associated with comorbid symptoms including treatment-resistant-epilepsy, sleep disturbances, and gastrointestinal distress. Mechanistic links between these diverse symptoms andSYNGAP1variants remain obscure, therefore, our goal was to generate a zebrafish model in which this range of symptoms can be studied. MethodsWe used CRISPR/Cas9 to introduce frameshift mutations in thesyngap1aandsyngap1bzebrafish duplicates (syngap1ab) and validated these stable models for Syngap1 loss-of-function. BecauseSYNGAP1is extensively spliced, we mapped splice variants to the two zebrafishsyngap1aandbgenes and identified mammalian-like isoforms. We then quantified locomotory behaviors in zebrafishsyngap1ablarvae under three conditions that normally evoke different arousal states in wild-type larvae: aversive, high-arousal acoustic, medium-arousal dark, and low-arousal light stimuli. ResultsWe show that CRISPR/Cas9 indels in zebrafishsyngap1aandsyngap1bproduced loss-of-function alleles at RNA and protein levels. Our analyses of zebrafish Syngap1 isoforms showed that, as in mammals, zebrafish Syngap1 N- and C-termini are extensively spliced. We identified a zebrafishsyngap1α1-like variant that maps exclusively to thesyngap1bgene. Quantifying locomotor behaviors showed thatsyngap1abmutant larvae are hyperactive compared to wild-type but to differing degrees depending on the stimulus. Hyperactivity was most pronounced in low arousal settings, and hyperactivity was proportional to the number of mutantsyngap1alleles. LimitationsSyngap1loss-of-function mutations produce relatively subtle phenotypes in zebrafish compared to mammals. For example, while mouseSyngap1homozygotes die at birth, zebrafishsyngap1ab−/−survive to adulthood and are fertile, thus some aspects of symptoms in people withSYNGAP1-Related Disorder are not likely to be reflected in zebrafish. ConclusionOur data support mutations in zebrafishsyngap1abas causal for hyperactivity associated with elevated arousal that is especially pronounced in low-arousal environments. 
    more » « less