skip to main content


Title: Optimized communication strategies with binary coherent states over phase noise channels
Abstract

The achievable rate of information transfer in optical communications is determined by the physical properties of the communication channel, such as the intrinsic channel noise. Bosonic phase noise channels, a class of non-Gaussian channels, have emerged as a relevant noise model in quantum information and optical communication. However, while the fundamental limits for communication over Gaussian channels have been extensively studied, the properties of communication over Bosonic phase noise channels are not well understood. Here we propose and demonstrate experimentally the concept of optimized communication strategies for communication over phase noise channels to enhance information transfer beyond what is possible with conventional methods of modulation and detection. Two key ingredients are generalized constellations of coherent states that interpolate between standard on-off keying and binary phase-shift keying formats, and non-Gaussian measurements based on photon number resolving detection of the coherently displaced signal. For a given power constraint and channel noise strength, these novel strategies rely on joint optimization of the input alphabet and the measurement to provide enhanced communication capability over a non-Gaussian channel characterized in terms of the error rate as well as mutual information.

 
more » « less
Award ID(s):
1653670
NSF-PAR ID:
10154152
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Information
Volume:
5
Issue:
1
ISSN:
2056-6387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bosonic channels describe quantum-mechanically many practical communication links such as optical, microwave, and radiofrequency. We investigate the maximum rates for the bosonic multiple access channel (MAC) in the presence of thermal noise added by the environment and when the transmitters utilize Gaussian state inputs. We develop an outer bound for the capacity region for the thermal-noise lossy bosonic MAC. We additionally find that the use of coherent states at the transmitters is capacity-achieving in the limits of high and low mean input photon numbers. Furthermore, we verify that coherent states are capacity-achieving for the sum rate of the channel. In the non-asymptotic regime, when a global mean photon-number constraint is imposed on the transmitters, coherent states are the optimal Gaussian state. Surprisingly however, the use of single-mode squeezed states can increase the capacity over that afforded by coherent state encoding when each transmitter is photon number constrained individually. 
    more » « less
  2. We examine the effects of imperfect phase estimation of a reference signal on the bit error rate and mutual information over a communication channel influenced by fading and thermal noise. The Two-Wave Diffuse-Power (TWDP) model is utilized for statistical characterization of propagation environment where there are two dominant line-of-sight components together with diffuse ones. We derive novel analytical expression of the Fourier series for probability density function arising from the composite received signal phase. Further, the expression for the bit error rate is presented and numerically evaluated. We develop efficient analytical, numerical and simulation methods for estimating the value of the error floor and identifying the range of acceptable signal-to-noise ratio (SNR) values in cases when the floor is present during the detection of multilevel phase-shift keying (PSK) signals. In addition, we use Monte Carlo simulations in order to evaluate the mutual information for modulation orders two, four and eight, and identify its dependence on receiver hardware imperfections under the given channel conditions. Our results expose direct correspondence between bit error rate and mutual information value on one side, and the parameters of TWDP channel, SNR and phase noise standard deviation on the other side. The results illustrate that the error floor values are strongly influenced by the phase noise when signals propagate over a TWDP channel. In addition, the phase noise considerably affects the mutual information.

     
    more » « less
  3. null (Ed.)
    The measures of information transfer which correspond to non-additive entropies have intensively been studied in previous decades. The majority of the work includes the ones belonging to the Sharma–Mittal entropy class, such as the Rényi, the Tsallis, the Landsberg–Vedral and the Gaussian entropies. All of the considerations follow the same approach, mimicking some of the various and mutually equivalent definitions of Shannon information measures, and the information transfer is quantified by an appropriately defined measure of mutual information, while the maximal information transfer is considered as a generalized channel capacity. However, all of the previous approaches fail to satisfy at least one of the ineluctable properties which a measure of (maximal) information transfer should satisfy, leading to counterintuitive conclusions and predicting nonphysical behavior even in the case of very simple communication channels. This paper fills the gap by proposing two parameter measures named the α-q-mutual information and the α-q-capacity. In addition to standard Shannon approaches, special cases of these measures include the α-mutual information and the α-capacity, which are well established in the information theory literature as measures of additive Rényi information transfer, while the cases of the Tsallis, the Landsberg–Vedral and the Gaussian entropies can also be accessed by special choices of the parameters α and q. It is shown that, unlike the previous definition, the α-q-mutual information and the α-q-capacity satisfy the set of properties, which are stated as axioms, by which they reduce to zero in the case of totally destructive channels and to the (maximal) input Sharma–Mittal entropy in the case of perfect transmission, which is consistent with the maximum likelihood detection error. In addition, they are non-negative and less than or equal to the input and the output Sharma–Mittal entropies, in general. Thus, unlike the previous approaches, the proposed (maximal) information transfer measures do not manifest nonphysical behaviors such as sub-capacitance or super-capacitance, which could qualify them as appropriate measures of the Sharma–Mittal information transfer. 
    more » « less
  4. Abstract High-performance quantum transducers, which faithfully convert quantum information between disparate physical carriers, are essential in quantum science and technology. Different figures of merit, including efficiency, bandwidth, and added noise, are typically used to characterize the transducers’ ability to transfer quantum information. Here we utilize quantum capacity, the highest achievable qubit communication rate through a channel, to define a single metric that unifies various criteria of a desirable transducer. Using the continuous-time quantum capacities of bosonic pure-loss channels as benchmarks, we investigate the optimal designs of generic quantum transduction schemes implemented by transmitting external signals through a coupled bosonic chain. With physical constraints on the maximal coupling rate $${g}_{\max }$$ g max , the highest continuous-time quantum capacity $${Q}^{\max }\approx 31.4{g}_{\max }$$ Q max ≈ 31.4 g max is achieved by transducers with a maximally flat conversion frequency response, analogous to Butterworth electric filters. We further investigate the effect of thermal noise on the performance of transducers. 
    more » « less
  5. n/a (Ed.)
    Because noise is inherent to all measurements, optical communication requires error identification and correction to protect and recover user data. Yet, error correction, routinely used in classical receivers, has not been applied to receivers that take advantage of quantum measurement. Here, we show how information uniquely available in a quantum measurement can be employed for efficient error correction. Our quantum-enabled forward error correction protocol operates on quadrature phase shift keying (QPSK) and achieves more than 80 dB error suppression compared to the raw symbol error rate and approximately 40 dB improvement of symbol error rates beyond the QPSK classical limit. With a symbol error rate below 10−9 for just 11 photons per bit, this approach enables reliable use of quantum receivers for ultra-low power optical communications. Limiting optical power improves the information capacity of optical links and enables scalable networks with coexisting quantum and classical channels in the same optical fiber. 
    more » « less