Mammalian genomes are folded into a hierarchy of compartments, topologically associating domains (TADs), subTADs, and long-range looping interactions. The higher-order folding patterns of chromatin contacts within TADs and how they localize to disease-associated single nucleotide variants (daSNVs) remains an open area of investigation. Here, we analyze high-resolution Hi-C data with graph theory to understand possible mesoscale network architecture within chromatin domains. We identify a subset of TADs exhibiting strong core-periphery mesoscale structure in embryonic stem cells, neural progenitor cells, and cortical neurons. Hyper-connected core nodes co-localize with genomic segments engaged in multiple looping interactions and enriched for occupancy of the architectural protein CCCTC binding protein (CTCF). CTCF knockdown and
- PAR ID:
- 10154155
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)During the development of mouse embryonic stem cells (ESC) to neuronal committed cells (NCC), coordinated changes in the expression of 2851 genes take place, mediated by the nuclear form of FGFR1. In this paper, widespread differences are demonstrated in the ESC and NCC inter- and intra-chromosomal interactions, chromatin looping, the formation of CTCF- and nFGFR1-linked Topologically Associating Domains (TADs) on a genome-wide scale and in exemplary HoxA-D loci. The analysis centered on HoxA cluster shows that blocking FGFR1 disrupts the loop formation. FGFR1 binding and genome locales are predictive of the genome interactions; likewise, chromatin interactions along with nFGFR1 binding are predictive of the genome function and correlate with genome regulatory attributes and gene expression. This study advances a topologically integrated genome archipelago model that undergoes structural transformations through the formation of nFGFR1-associated TADs. The makeover of the TAD islands serves to recruit distinct ontogenic programs during the development of the ESC to NCC.more » « less
-
Abstract Chromatin looping is important for gene regulation, and studies of 3D chromatin structure across species and cell types have improved our understanding of the principles governing chromatin looping. However, 3D genome evolution and its relationship with natural selection remains largely unexplored. In mammals, the CTCF protein defines the boundaries of most chromatin loops, and variations in CTCF occupancy are associated with looping divergence. While many CTCF binding sites fall within transposable elements (TEs), their contribution to 3D chromatin structural evolution is unknown. Here we report the relative contributions of TE-driven CTCF binding site expansions to conserved and divergent chromatin looping in human and mouse. We demonstrate that TE-derived CTCF binding divergence may explain a large fraction of variable loops. These variable loops contribute significantly to corresponding gene expression variability across cells and species, possibly by refining sub-TAD-scale loop contacts responsible for cell-type-specific enhancer-promoter interactions.
-
Abstract Nuclear compartments are prominent features of 3D chromatin organization, but sequencing depth limitations have impeded investigation at ultra fine-scale. CTCF loops are generally studied at a finer scale, but the impact of looping on proximal interactions remains enigmatic. Here, we critically examine nuclear compartments and CTCF loop-proximal interactions using a combination of in situ Hi-C at unparalleled depth, algorithm development, and biophysical modeling. Producing a large Hi-C map with 33 billion contacts in conjunction with an algorithm for performing principal component analysis on sparse, super massive matrices (POSSUMM), we resolve compartments to 500 bp. Our results demonstrate that essentially all active promoters and distal enhancers localize in the A compartment, even when flanking sequences do not. Furthermore, we find that the TSS and TTS of paused genes are often segregated into separate compartments. We then identify diffuse interactions that radiate from CTCF loop anchors, which correlate with strong enhancer-promoter interactions and proximal transcription. We also find that these diffuse interactions depend on CTCF’s RNA binding domains. In this work, we demonstrate features of fine-scale chromatin organization consistent with a revised model in which compartments are more precise than commonly thought while CTCF loops are more protracted.
-
Inhomogeneous patterns of enhanced chromatin-chromatin contacts within 10-100 kb-sized regions of the genome are a generic feature of chromatin spatial organization. These features, termed topologically associating domains (TADs), have led to the loop extrusion factor (LEF) model, where TADs arise from loop extrusion by cohesin complexes. Currently, our ability to model TADs relies on the observation that in vertebrates TAD boundaries are correlated with DNA sequences that bind CTCF, which therefore is inferred to block loop extrusion. However, although TADs feature prominently in their Hi-C maps, non-vertebrate eukaryotes either do not express CTCF or show few TAD boundaries that correlate with CTCF sites. In all of these organisms, the counterparts of CTCF remain unknown, frustrating comparisons between Hi-C data and simulations. To extend the LEF model across the tree of life, here, we propose themore » « less
conserved-current loop extrusion (CCLE) model that interprets loop-extruding cohesin as a nearly-conserved probability current. From cohesin ChIP-seq data alone, we thus derive a position-dependent loop extrusion rate, allowing for a modified paradigm for loop extrusion, that goes beyond solely discrete, localized barriers to also include loop extrusion rates that vary more continuously across the genome. To demonstrate its utility in organisms lacking CTCF, we applied the CCLE model to the Hi-C maps of interphase Schizosaccharomyces pombe, as well as to those of meiotic and mitotic Saccharomyces cerevisiae In all cases, even though their Hi-C maps appear quite different, the model accurately predicts the TAD-scale Hi-C maps. It follows that loop extrusion by cohesin is indeed the primary mechanism underlying TADs in these systems. CCLE allows us to obtain loop extrusion parameters such as the LEF density and processivity, which compare well to independent estimates. The model also provides new insights into in vivo LEF composition and function. -
Abstract Background Inhomogeneous patterns of chromatin-chromatin contacts within 10–100-kb-sized regions of the genome are a generic feature of chromatin spatial organization. These features, termed topologically associating domains (TADs), have led to the loop extrusion factor (LEF) model. Currently, our ability to model TADs relies on the observation that in vertebrates TAD boundaries are correlated with DNA sequences that bind CTCF, which therefore is inferred to block loop extrusion. However, although TADs feature prominently in their Hi-C maps, non-vertebrate eukaryotes either do not express CTCF or show few TAD boundaries that correlate with CTCF sites. In all of these organisms, the counterparts of CTCF remain unknown, frustrating comparisons between Hi-C data and simulations.
Results To extend the LEF model across the tree of life, here, we propose the
conserved-current loop extrusion (CCLE) model that interprets loop-extruding cohesin as a nearly conserved probability current. From cohesin ChIP-seq data alone, we derive a position-dependent loop extrusion rate, allowing for a modified paradigm for loop extrusion, that goes beyond solely localized barriers to also include loop extrusion rates that vary continuously. We show that CCLE accurately predicts the TAD-scale Hi-C maps of interphaseSchizosaccharomyces pombe , as well as those of meiotic and mitoticSaccharomyces cerevisiae , demonstrating its utility in organisms lacking CTCF.Conclusions The success of CCLE in yeasts suggests that loop extrusion by cohesin is indeed the primary mechanism underlying TADs in these systems. CCLE allows us to obtain loop extrusion parameters such as the LEF density and processivity, which compare well to independent estimates.