skip to main content


Title: Is plasticity of synapses the mechanism of long-term memory storage?
Abstract

It has been 70 years since Donald Hebb published his formalized theory of synaptic adaptation during learning. Hebb’s seminal work foreshadowed some of the great neuroscientific discoveries of the following decades, including the discovery of long-term potentiation and other lasting forms of synaptic plasticity, and more recently the residence of memories in synaptically connected neuronal assemblies. Our understanding of the processes underlying learning and memory has been dominated by the view that synapses are the principal site of information storage in the brain. This view has received substantial support from research in several model systems, with the vast majority of studies on the topic corroborating a role for synapses in memory storage. Yet, despite the neuroscience community’s best efforts, we are still without conclusive proof that memories reside at synapses. Furthermore, an increasing number of non-synaptic mechanisms have emerged that are also capable of acting as memory substrates. In this review, we address the key findings from the synaptic plasticity literature that make these phenomena such attractive memory mechanisms. We then turn our attention to evidence that questions the reliance of memory exclusively on changes at the synapse and attempt to integrate these opposing views.

 
more » « less
NSF-PAR ID:
10154159
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Science of Learning
Volume:
4
Issue:
1
ISSN:
2056-7936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Long-term memory (LTM) is believed to be stored in the brain as changes in synaptic connections. Here, we show that LTM storage and synaptic change can be dissociated. Cocultures of Aplysia sensory and motor neurons were trained with spaced pulses of serotonin, which induces long-term facilitation. Serotonin (5HT) triggered growth of new presynaptic varicosities, a synaptic mechanism of long-term sensitization. Following 5HT training, two antimnemonic treatments—reconsolidation blockade and inhibition of PKM—caused the number of presynaptic varicosities to revert to the original, pretraining value. Surprisingly, the final synaptic structure was not achieved by targeted retraction of the 5HT-induced varicosities but, rather, by an apparently arbitrary retraction of both 5HT-induced and original synapses. In addition, we find evidence that the LTM for sensitization persists covertly after its apparent elimination by the same antimnemonic treatments that erase learning-related synaptic growth. These results challenge the idea that stable synapses store long-term memories.

     
    more » « less
  2. Spike-timing–dependent plasticity (STDP) is considered as a primary mechanism underlying formation of new memories during learning. Despite the growing interest in activity-dependent plasticity, it is still unclear whether synaptic plasticity rules inferred from in vitro experiments are correct in physiological conditions. The abnormally high calcium concentration used in in vitro studies of STDP suggests that in vivo plasticity rules may differ significantly from in vitro experiments, especially since STDP depends strongly on calcium for induction. We therefore studied here the influence of extracellular calcium on synaptic plasticity. Using a combination of experimental (patch-clamp recording and Ca2+imaging at CA3-CA1 synapses) and theoretical approaches, we show here that the classic STDP rule in which pairs of single pre- and postsynaptic action potentials induce synaptic modifications is not valid in the physiological Ca2+range. Rather, we found that these pairs of single stimuli are unable to induce any synaptic modification in 1.3 and 1.5 mM calcium and lead to depression in 1.8 mM. Plasticity can only be recovered when bursts of postsynaptic spikes are used, or when neurons fire at sufficiently high frequency. In conclusion, the STDP rule is profoundly altered in physiological Ca2+, but specific activity regimes restore a classical STDP profile.

     
    more » « less
  3. Abstract

    Various neurophysiological and cognitive functions are based on transferring information between spiking neurons via a complex system of synaptic connections. In particular, the capacity of presynaptic inputs to influence the postsynaptic outputs–the efficacy of the synapses–plays a principal role in all aspects of hippocampal neurophysiology. However, a direct link between the information processed at the level of individual synapses and the animal’s ability to form memories at the organismal level has not yet been fully understood. Here, we investigate the effect of synaptic transmission probabilities on the ability of the hippocampal place cell ensembles to produce a cognitive map of the environment. Using methods from algebraic topology, we find that weakening synaptic connections increase spatial learning times, produce topological defects in the large-scale representation of the ambient space and restrict the range of parameters for which place cell ensembles are capable of producing a map with correct topological structure. On the other hand, the results indicate a possibility of compensatory phenomena, namely that spatial learning deficiencies may be mitigated through enhancement of neuronal activity.

     
    more » « less
  4. Animals employ diverse learning rules and synaptic plasticity dynamics to record temporal and statistical information about the world. However, the molecular mechanisms underlying this diversity are poorly understood. The anatomically defined compartments of the insect mushroom body function as parallel units of associative learning, with different learning rates, memory decay dynamics and flexibility (Aso and Rubin, 2016). Here, we show that nitric oxide (NO) acts as a neurotransmitter in a subset of dopaminergic neurons in Drosophila. NO’s effects develop more slowly than those of dopamine and depend on soluble guanylate cyclase in postsynaptic Kenyon cells. NO acts antagonistically to dopamine; it shortens memory retention and facilitates the rapid updating of memories. The interplay of NO and dopamine enables memories stored in local domains along Kenyon cell axons to be specialized for predicting the value of odors based only on recent events. Our results provide key mechanistic insights into how diverse memory dynamics are established in parallel memory systems. 
    more » « less
  5. null (Ed.)
    Abstract Long-term depression (LTD) of synaptic strength can take multiple forms and contribute to circuit remodeling, memory encoding or erasure. The generic term LTD encompasses various induction pathways, including activation of NMDA, mGlu or P2X receptors. However, the associated specific molecular mechanisms and effects on synaptic physiology are still unclear. We here compare how NMDAR- or P2XR-dependent LTD affect synaptic nanoscale organization and function in rodents. While both LTDs are associated with a loss and reorganization of synaptic AMPARs, only NMDAR-dependent LTD induction triggers a profound reorganization of PSD-95. This modification, which requires the autophagy machinery to remove the T19-phosphorylated form of PSD-95 from synapses, leads to an increase in AMPAR surface mobility. We demonstrate that these post-synaptic changes that occur specifically during NMDAR-dependent LTD result in an increased short-term plasticity improving neuronal responsiveness of depressed synapses. Our results establish that P2XR- and NMDAR-mediated LTD are associated to functionally distinct forms of LTD. 
    more » « less