skip to main content


Title: Early-career setback and future career impact
Abstract

Setbacks are an integral part of a scientific career, yet little is known about their long-term effects. Here we examine junior scientists applying for National Institutes of Health R01 grants. By focusing on proposals fell just below and just above the funding threshold, we compare near-miss with narrow-win applicants, and find that an early-career setback has powerful, opposing effects. On the one hand, it significantly increases attrition, predicting more than a 10% chance of disappearing permanently from the NIH system. Yet, despite an early setback, individuals with near misses systematically outperform those with narrow wins in the longer run. Moreover, this performance advantage seems to go beyond a screening mechanism, suggesting early-career setback appears to cause a performance improvement among those who persevere. Overall, these findings are consistent with the concept that “what doesn’t kill me makes me stronger,” which may have broad implications for identifying, training and nurturing junior scientists.

 
more » « less
Award ID(s):
1829344
NSF-PAR ID:
10154166
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
10
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    My interest in the oceans first developed when I was a teenager, but I did not actually go to sea until I was in the U.S. Navy. With that experience, I developed a love of the oceans and an interest in oceanography. My graduate training was a time when oceanography and marine geology were blossoming with new ideas and new tools to explore the ocean world. The theory of plate tectonics was becoming widely accepted and scientific ocean drilling was just starting. My thesis study area was in the tropical Pacific. Soon after receiving my PhD, I sailed on Deep Sea Drilling Project Leg 8, which drilled the first transect across the Pacific equator. The nature of the sediments there posed many scientific questions that continued to intrigue me. Some of these questions remained unanswered for a long time. Early in my career I was fortunate to work with a group of specialists from outside my field of expertise to study the global climate during the last glacial maximum (the CLIMAP Project). Subsequently, I spent 8 years working in the oil industry. This experience taught me the skills of interpreting seismic reflection records that help unravel the history of sediment deposition. When I returned to academia, these skills proved particularly useful in studies of large lakes. Late in my career, I returned to studies of the tropical Pacific, where new tools and techniques helped answer some of my unanswered questions.

     
    more » « less
  2. Abstract Background

    Digital media are pervasive in the lives of young people and provide opportunities for them to learn about STEM. Multiple theories argue that the STEM media environment may shape how youth see a STEM career in their future. Yet, little is known about how pre-college digital media consumption may be related to students’ STEM career interest at the beginning of college. The wide variety of STEM media also raises the question of potentially different effects and pathways by media type. In this study, we collected a nationally representative sample of more than 15,000 students in their first year in U.S. colleges and universities. We asked about their career interests at the beginning of college and also asked them to retrospectively report their STEM media consumption during high school.

    Results

    We found that watching STEM-related TV and online videos, as well as playing STEM-related video games during high school, were positively associated with students’ STEM career interests at the beginning of college. However, we also found that STEM media consumption did not impact directly on STEM career interest, but acted through two intermediaries: STEM identity (I and others see me as a STEM person) and three personal career outcome expectations: a high interest in self-development (enhancement and use of talents), and low interests in material status (money, fame, power) and in interpersonal relationships (helping, and working with, other people).

    Conclusions

    This study finds that STEM media have a significant effect in fostering STEM career interest, with most of the effect coming from STEM TV, STEM video viewing, and STEM video games. The effect is mediated mainly through students’ identity and, to a lesser extent, through personal values, such as self-development, material, and interpersonal relationship values. This study suggests that media communication should be mindful of how different platforms may deliver nuanced and varied messages of what STEM careers may afford and who can succeed in STEM.

     
    more » « less
  3. Abstract

    In the recent decade, we have seen major progress in quantifying the behaviors and the impact of scientists, resulting in a quantitative toolset capable of monitoring and predicting the career patterns of the profession. It is unclear, however, if this toolset applies to other creative domains beyond the sciences. In particular, while performance in the arts has long been difficult to quantify objectively, research suggests that professional networks and prestige of affiliations play a similar role to those observed in science, hence they can reveal patterns underlying successful careers. To test this hypothesis, here we focus on ballet, as it allows us to investigate in a quantitative fashion the interplay of individual performance, institutional prestige, and network effects. We analyze data on competition outcomes from 6363 ballet students affiliated with 1603 schools in the United States, who participated in the Youth America Grand Prix (YAGP) between 2000 and 2021. Through multiple logit models and matching experiments, we provide evidence that schools’ strategic network position bridging between communities captures social prestige and predicts the placement of students into jobs in ballet companies. This work reveals the importance of institutional prestige on career success in ballet and showcases the potential of network science approaches to provide quantitative viewpoints for the professional development of careers beyond science.

     
    more » « less
  4. Background:

    The United States continues to invest considerable resources into developing the next generation of science, technology, engineering, and mathematics (STEM) talent. Efforts to shore up interest in pursuing STEM careers span decades and have increasingly focused on boosting interest among diverse student populations. Policymakers have called for engaging students in a greater STEM ecology of support that extends beyond the traditional classroom environment to increase student STEM career interest. Yet, few robust studies exist exploring the efficacy of many programmatic efforts and initiatives outside the regular curriculum intended to foster STEM interest. To maximize STEM education investments, promote wise policies, and help achieve the aim of creating STEM learning ecosystems that benefit diverse student populations and meet the nation’s STEM goals, it is crucial to examine the effectiveness of these kinds of STEM education initiatives in promoting STEM career aspirations.

    Purpose:

    The purpose of this quasi-experimental study was to examine the impact of one popular, yet understudied, STEM education initiative on students’ STEM career aspirations: participation in a university- or college-run STEM club or program activity (CPA) during high school. Specifically, we studied whether participation in a college-run STEM CPA at a postsecondary institution during high school was related to college-going students’ STEM career aspirations, and we examined whether that relationship differed depending on student characteristics and prior STEM interests.

    Research Design:

    We conducted a quasi-experimental investigation to explore the impact of participation in university- or college-run STEM CPAs on college-going students’ STEM career aspirations. We administered a retrospective cohort survey to students at 27 colleges and universities nationwide resulting in a sample of 15,847 respondents. An inverse probability of treatment weighted logistic regression model with a robust set of controls was computed to estimate the odds of expressing STEM career aspirations among those who participated in college-run STEM CPAs compared with the odds expressed among students who did not participate. Our weighting accounted for self-selection effects.

    Results:

    Quasi-experimental modeling results indicated that participation in university- or college-run STEM CPAs had a significant impact on the odds that college-going students would express STEM career aspirations relative to students who did not participate. The odds of expressing interest in a STEM career among participants in STEM CPAs were 1.49 times those of the control group. Robustness checks confirmed our results. The result held true for students whether or not they expressed interest in STEM careers prior to participation in STEM CPAs, and it held true across a diverse range of student characteristics (e.g., race, parental education, gender, standardized test scores, and family/school encouragement).

    Conclusions:

    Results suggest that university- and college-run STEM CPAs play an important role in the STEM education ecology, serving the national goal of expanding the pool of college-going students who aspire to STEM careers. Moreover, results showed that participation in university- and college-run STEM CPAs during high school is equally effective across diverse student characteristics. Policymakers, educators, and those charged with making investment decisions in STEM education should seriously consider university- and college-run STEM CPAs as a promising vehicle to promote diverse students’ STEM career aspirations in the broader STEM learning ecosystem and as an important complement to other STEM learning environments.

     
    more » « less
  5. Grundy, Quinn (Ed.)
    Early research on the impact of COVID-19 on academic scientists suggests that disruptions to research, teaching, and daily work life are not experienced equally. However, this work has overwhelmingly focused on experiences of women and parents, with limited attention to the disproportionate impact on academic work by race, disability status, sexual identity, first-generation status, and academic career stage. Using a stratified random survey sample of early-career academics in four science disciplines ( N = 3,277), we investigated socio-demographic and career stage differences in the effect of the COVID-19 pandemic along seven work outcomes: changes in four work areas (research progress, workload, concern about career advancement, support from mentors) and work disruptions due to three COVID-19 related life challenges (physical health, mental health, and caretaking). Our analyses examined patterns across career stages as well as separately for doctoral students and for postdocs/assistant professors. Overall, our results indicate that scientists from marginalized (i.e., devalued) and minoritized (i.e., underrepresented) groups across early career stages reported more negative work outcomes as a result of COVID-19. However, there were notable patterns of differences depending on the socio-demographic identities examined. Those with a physical or mental disability were negatively impacted on all seven work outcomes. Women, primary caregivers, underrepresented racial minorities, sexual minorities, and first-generation scholars reported more negative experiences across several outcomes such as increased disruptions due to physical health symptoms and additional caretaking compared to more privileged counterparts. Doctoral students reported more work disruptions from life challenges than other early-career scholars, especially those related to health problems, while assistant professors reported more negative changes in areas such as decreased research progress and increased workload. These findings suggest that the COVID-19 pandemic has disproportionately harmed work outcomes for minoritized and marginalized early-career scholars. Institutional interventions are required to address these inequalities in an effort to retain diverse cohorts in academic science. 
    more » « less