skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mental models use common neural spatial structure for spatial and abstract content
Abstract Mental models provide a cognitive framework allowing for spatially organizing information while reasoning about the world. However, transitive reasoning studies often rely on perception of stimuli that contain visible spatial features, allowing the possibility that associated neural representations are specific to inherently spatial content. Here, we test the hypothesis that neural representations of mental models generated through transitive reasoning rely on a frontoparietal network irrespective of the spatial nature of the stimulus content. Content within three models ranges from expressly visuospatial to abstract. All mental models participants generated were based on inferred relationships never directly observed. Here, using multivariate representational similarity analysis, we show that patterns representative of mental models were revealed in both superior parietal lobule and anterior prefrontal cortex and converged across stimulus types. These results support the conclusion that, independent of content, transitive reasoning using mental models relies on neural mechanisms associated with spatial cognition.  more » « less
Award ID(s):
1661088
PAR ID:
10154173
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Volume:
3
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Relational reasoning is a complex form of human cognition involving the evaluation of relations between mental representations of information. Prior studies have modified stimulus properties of relational reasoning problems and examined differences in difficulty between different problem types. While subsets of these stimulus properties have been addressed in separate studies, there has not been a comprehensive study, to our knowledge, which investigates all of these properties in the same set of stimuli. This investigative gap has resulted in different findings across studies which vary in task design, making it challenging to determine what stimulus properties make relational reasoning—and the putative formation of mental models underlying reasoning—difficult. In this article, we present the Multidimensional Relational Reasoning Task (MRRT), a task which systematically varied an array of stimulus properties within a single set of relational reasoning problems. Using a mixed-effects framework, we demonstrate that reasoning problems containing a greater number of the premises as well as multidimensional relations led to greater task difficulty. The MRRT has been made publicly available for use in future research, along with normative data regarding the relative difficulty of each problem. 
    more » « less
  2. Abstract Qualitative spatial/temporal reasoning (QSR/QTR) plays a key role in research on human cognition, e.g., as it relates to navigation, as well as in work on robotics and artificial intelligence. Although previous work has mainly focused on various spatial and temporal calculi, more recently representation learning techniques such as embedding have been applied to reasoning and inference tasks such as query answering and knowledge base completion. These subsymbolic and learnable representations are well suited for handling noise and efficiency problems that plagued prior work. However, applying embedding techniques to spatial and temporal reasoning has received little attention to date. In this paper, we explore two research questions: (1) How do embedding-based methods perform empirically compared to traditional reasoning methods on QSR/QTR problems? (2) If the embedding-based methods are better, what causes this superiority? In order to answer these questions, we first propose a hyperbolic embedding model, called HyperQuaternionE, to capture varying properties of relations (such as symmetry and anti-symmetry), to learn inversion relations and relation compositions (i.e., composition tables), and to model hierarchical structures over entities induced by transitive relations. We conduct various experiments on two synthetic datasets to demonstrate the advantages of our proposed embedding-based method against existing embedding models as well as traditional reasoners with respect to entity inference and relation inference. Additionally, our qualitative analysis reveals that our method is able to learn conceptual neighborhoods implicitly. We conclude that the success of our method is attributed to its ability to model composition tables and learn conceptual neighbors, which are among the core building blocks of QSR/QTR. 
    more » « less
  3. Abstract Non-rigid spatial thinking, or mental transformations where the distance between two points in an object changes (e.g., folding, breaking, bending), is required for many STEM fields but remains critically understudied. We developed and tested a non-rigid, ductile spatial skill measure based on reasoning about knots with 279 US adults (M = 30.90, SD 5.47 years; 76% White; 48% women). The resultant 54-item measure had good reliability (α = .88). Next, 147 US adults (M = 20.65, SD 2.80 years; 48% White; 56% women) completed existing spatial skills measures, the knot reasoning measure, a verbal skill measure, and surveys of current and childhood spatial activities. Knot reasoning performance was significantly, positively correlated with existing measures of spatial skill. Mental rotation and paper folding, but not bending, predicted knot reasoning task performance. We replicated work showing that men performed better than women on mental rotation and unexpectedly found that men also outperformed women on paper folding and knot reasoning, but not bending, tasks. Using structural equation modeling, we found several significant mediation effects. Men who reported less masculine-stereotyped spatial activity engagement had higher performance on the mental rotation and knot reasoning tasks. Women who reported greater engagement in feminine-stereotyped spatial activities had higher paper folding and backwards knot reasoning performance. Spatial skills did not differ among math-intensive STEM, non-math-intensive STEM, and non-STEM majors. The studies introduce a reliable measure of non-rigid, ductile string transformations and provide initial evidence of the role of gender and gendered spatial activities on non-rigid spatial skills. 
    more » « less
  4. Abstract Investigations into how individual neurons encode behavioral variables of interest have revealed specific representations in single neurons, such as place and object cells, as well as a wide range of cells with conjunctive encodings or mixed selectivity. However, as most experiments examine neural activity within individual tasks, it is currently unclear if and how neural representations change across different task contexts. Within this discussion, the medial temporal lobe is particularly salient, as it is known to be important for multiple behaviors including spatial navigation and memory, however the relationship between these functions is currently unclear. Here, to investigate how representations in single neurons vary across different task contexts in the medial temporal lobe, we collected and analyzed single‐neuron activity from human participants as they completed a paired‐task session consisting of a passive‐viewing visual working memory and a spatial navigation and memory task. Five patients contributed 22 paired‐task sessions, which were spike sorted together to allow for the same putative single neurons to be compared between the different tasks. Within each task, we replicated concept‐related activations in the working memory task, as well as target‐location and serial‐position responsive cells in the navigation task. When comparing neuronal activity between tasks, we first established that a significant number of neurons maintained the same kind of representation, responding to stimuli presentations across tasks. Further, we found cells that changed the nature of their representation across tasks, including a significant number of cells that were stimulus responsive in the working memory task that responded to serial position in the spatial task. Overall, our results support a flexible encoding of multiple, distinct aspects of different tasks by single neurons in the human medial temporal lobe, whereby some individual neurons change the nature of their feature coding between task contexts. 
    more » « less
  5. Abbott, Derek (Ed.)
    Abstract Human vision, thought, and planning involve parsing and representing objects and scenes using structured representations based on part-whole hierarchies. Computer vision and machine learning researchers have recently sought to emulate this capability using neural networks, but a generative model formulation has been lacking. Generative models that leverage compositionality, recursion, and part-whole hierarchies are thought to underlie human concept learning and the ability to construct and represent flexible mental concepts. We introduce Recursive Neural Programs (RNPs), a neural generative model that addresses the part-whole hierarchy learning problem by modeling images as hierarchical trees of probabilistic sensory-motor programs. These programs recursively reuse learned sensory-motor primitives to model an image within different spatial reference frames, enabling hierarchical composition of objects from parts and implementing a grammar for images. We show that RNPs can learn part-whole hierarchies for a variety of image datasets, allowing rich compositionality and intuitive parts-based explanations of objects. Our model also suggests a cognitive framework for understanding how human brains can potentially learn and represent concepts in terms of recursively defined primitives and their relations with each other. 
    more » « less