skip to main content


Title: Exchange biased anomalous Hall effect driven by frustration in a magnetic kagome lattice
Abstract

Co$$_{3}$$3Sn$$_{2}$$2S$$_{2}$$2is a ferromagnetic Weyl semimetal that has been the subject of intense scientific interest due to its large anomalous Hall effect. We show that the coupling of this material’s topological properties to its magnetic texture leads to a strongly exchange biased anomalous Hall effect. We argue that this is likely caused by the coexistence of ferromagnetism and geometric frustration intrinsic to the kagome network of magnetic ions, giving rise to spin-glass behavior and an exchange bias.

 
more » « less
NSF-PAR ID:
10154187
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two-dimensional electron systems subjected to high transverse magnetic fields can exhibit Fractional Quantum Hall Effects (FQHE). In the GaAs/AlGaAs 2D electron system, a double degeneracy of Landau levels due to electron-spin, is removed by a small Zeeman spin splitting,$$g \mu _B B$$gμBB, comparable to the correlation energy. Then, a change of the Zeeman splitting relative to the correlation energy can lead to a re-ordering between spin polarized, partially polarized, and unpolarized many body ground states at a constant filling factor. We show here that tuning the spin energy can produce fractionally quantized Hall effect transitions that include both a change in$$\nu$$νfor the$$R_{xx}$$Rxxminimum, e.g., from$$\nu = 11/7$$ν=11/7to$$\nu = 8/5$$ν=8/5, and a corresponding change in the$$R_{xy}$$Rxy, e.g., from$$R_{xy}/R_{K} = (11/7)^{-1}$$Rxy/RK=(11/7)-1to$$R_{xy}/R_{K} = (8/5)^{-1}$$Rxy/RK=(8/5)-1, with increasing tilt angle. Further, we exhibit a striking size dependence in the tilt angle interval for the vanishing of the$$\nu = 4/3$$ν=4/3and$$\nu = 7/5$$ν=7/5resistance minima, including “avoided crossing” type lineshape characteristics, and observable shifts of$$R_{xy}$$Rxyat the$$R_{xx}$$Rxxminima- the latter occurring for$$\nu = 4/3, 7/5$$ν=4/3,7/5and the 10/7. The results demonstrate both size dependence and the possibility, not just of competition between different spin polarized states at the same$$\nu$$νand$$R_{xy}$$Rxy, but also the tilt- or Zeeman-energy-dependent- crossover between distinct FQHE associated with different Hall resistances.

     
    more » « less
  2. Abstract

    The anomalous Hall effect (AHE), typically observed in ferromagnetic (FM) metals with broken time-reversal symmetry, depends on electronic and magnetic properties. In Co3Sn2-xInxS2, a giant AHE has been attributed to Berry curvature associated with the FM Weyl semimetal phase, yet recent studies report complicated magnetism. We use neutron scattering to determine the spin dynamics and structures as a function ofxand provide a microscopic understanding of the AHE and magnetism interplay. Spin gap and stiffness indicate a contribution from Weyl fermions consistent with the AHE. The magnetic structure evolves fromc-axis ferromagnetism at$$x = 0$$x=0to a canted antiferromagnetic (AFM) structure with reducedc-axis moment and in-plane AFM order at$$x = 0.12$$x=0.12and further reducedc-axis FM moment at$$x = 0.3$$x=0.3. Since noncollinear spins can induce non-zero Berry curvature in real space acting as a fictitious magnetic field, our results revealed another AHE contribution, establishing the impact of magnetism on transport.

     
    more » « less
  3. Abstract

    We perform path-integral molecular dynamics (PIMD), ring-polymer MD (RPMD), and classical MD simulations of H$$_2$$2O and D$$_2$$2O using the q-TIP4P/F water model over a wide range of temperatures and pressures. The density$$\rho (T)$$ρ(T), isothermal compressibility$$\kappa _T(T)$$κT(T), and self-diffusion coefficientsD(T) of H$$_2$$2O and D$$_2$$2O are in excellent agreement with available experimental data; the isobaric heat capacity$$C_P(T)$$CP(T)obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$_2$$2O and D$$_2$$2O exhibit a liquid-liquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$2O and D$$_2$$2O can be fitted remarkably well using the Two-State-Equation-of-State (TSEOS). Using the TSEOS, we estimate that the LLCP for q-TIP4P/F H$$_2$$2O, from PIMD simulations, is located at$$P_c = 167 \pm 9$$Pc=167±9 MPa,$$T_c = 159 \pm 6$$Tc=159±6 K, and$$\rho _c = 1.02 \pm 0.01$$ρc=1.02±0.01 g/cm$$^3$$3. Isotope substitution effects are important; the LLCP location in q-TIP4P/F D$$_2$$2O is estimated to be$$P_c = 176 \pm 4$$Pc=176±4 MPa,$$T_c = 177 \pm 2$$Tc=177±2 K, and$$\rho _c = 1.13 \pm 0.01$$ρc=1.13±0.01 g/cm$$^3$$3. Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effects (i.e., atoms delocalization) play an important role in the thermodynamics of water around the LLCP (from the MD simulations of q-TIP4P/F water,$$P_c = 203 \pm 4$$Pc=203±4 MPa,$$T_c = 175 \pm 2$$Tc=175±2 K, and$$\rho _c = 1.03 \pm 0.01$$ρc=1.03±0.01 g/cm$$^3$$3). Overall, our results strongly support the LLPT scenario to explain water anomalous behavior, independently of the fundamental differences between classical MD and PIMD techniques. The reported values of$$T_c$$Tcfor D$$_2$$2O and, particularly, H$$_2$$2O suggest that improved water models are needed for the study of supercooled water.

     
    more » « less
  4. Abstract

    We report a transport study on Pd3In7which displays multiple Dirac type-II nodes in its electronic dispersion. Pd3In7is characterized by low residual resistivities and high mobilities, which are consistent with Dirac-like quasiparticles. For an applied magnetic field (μ0H) having a non-zero component along the electrical current, we find a large, positive, and linear inμ0Hlongitudinal magnetoresistivity (LMR). The sign of the LMR and its linear dependence deviate from the behavior reported for the chiral-anomaly-driven LMR in Weyl semimetals. Interestingly, such anomalous LMR is consistent with predictions for the role of the anomaly in type-II Weyl semimetals. In contrast, the transverse or conventional magnetoresistivity (CMR for electric fieldsEμ0H) is large and positive, increasing by 103−104% as a function ofμ0Hwhile following an anomalous, angle-dependent power law$${\rho }_{{{{\rm{xx}}}}}\propto {({\mu }_{0}H)}^{n}$$ρxx(μ0H)nwithn(θ) ≤ 1. The order of magnitude of the CMR, and its anomalous power-law, is explained in terms of uncompensated electron and hole-like Fermi surfaces characterized by anisotropic carrier scattering likely due to the lack of Lorentz invariance.

     
    more » « less
  5. Abstract

    The presence of topological flat minibands in moiré materials provides an opportunity to explore the interplay between topology and correlation. In this work, we study moiré minibands in topological insulator films with two hybridized surface states under a moiré superlattice potential created by two-dimensional insulating materials. We show the lowest conduction (highest valence) Kramers’ pair of minibands can be$${{\mathbb{Z}}}_{2}$$Z2non-trivial when the minima (maxima) of moiré potential approximately form a hexagonal lattice with six-fold rotation symmetry. Coulomb interaction can drive the non-trivial Kramers’ minibands into the quantum anomalous Hall state when they are half-filled, which is further stabilized by applying external gate voltages to break inversion. We propose the monolayer Sb2on top of Sb2Te3films as a candidate based on first principles calculations. Our work demonstrates the topological insulator based moiré heterostructure as a potential platform for studying interacting topological phases.

     
    more » « less