Single‐parent expression (SPE) is defined as gene expression in only one of the two parents. SPE can arise from differential expression between parental alleles, termed non‐presence/absence (non‐PAV) SPE, or from the physical absence of a gene in one parent, termed PAV SPE. We used transcriptome data of diverse
Haplotype phasing maize genetic variants is important for genome interpretation, population genetic analysis and functional analysis of allelic activity. We performed an isoform-level phasing study using two maize inbred lines and their reciprocal crosses, based on single-molecule, full-length cDNA sequencing. To phase and analyze transcripts between hybrids and parents, we developed IsoPhase. Using this tool, we validated the majority of SNPs called against matching short-read data from embryo, endosperm and root tissues, and identified allele-specific, gene-level and isoform-level differential expression between the inbred parental lines and hybrid offspring. After phasing 6907 genes in the reciprocal hybrids, we annotated the SNPs and identified large-effect genes. In addition, we identified parent-of-origin isoforms, distinct novel isoforms in maize parent and hybrid lines, and imprinted genes from different tissues. Finally, we characterized variation in cis- and trans-regulatory effects. Our study provides measures of haplotypic expression that could increase accuracy in studies of allelic expression.
more » « less- NSF-PAR ID:
- 10154190
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Biology
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2399-3642
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
SUMMARY Zea mays (maize) inbreds and hybrids, including 401 samples from five different tissues, to test for differences between these types of SPE genes. Although commonly observed, SPE is highly genotype and tissue specific. A positive correlation was observed between the genetic distance of the two inbred parents and the number of SPE genes identified. Regulatory analysis showed that PAV SPE and non‐PAV SPE genes are mainly regulated bycis effects, with a small fraction undertrans regulation. Polymorphic transposable element insertions in promoter sequences contributed to the high level ofcis regulation for PAV SPE and non‐PAV SPE genes. PAV SPE genes were more frequently expressed in hybrids than non‐PAV SPE genes. The expression of parentally silent alleles in hybrids of non‐PAV SPE genes was relatively rare but occurred in most hybrids. Non‐PAV SPE genes with expression of the silent allele in hybrids are more likely to exhibit above high parent expression level than hybrids that do not express the silent allele, leading to non‐additive expression. This study provides a comprehensive understanding of the nature of non‐PAV SPE and PAV SPE genes and their roles in gene expression complementation in maize hybrids. -
Summary Plants respond to abiotic stress through a variety of physiological, biochemical, and transcriptional mechanisms. Many genes exhibit altered levels of expression in response to abiotic stress, which requires concerted action of both
cis‐ andtrans‐ regulatory features. In order to study the variability in transcriptome response to abiotic stress,RNA sequencing was performed using 14‐day‐old maize seedlings of inbreds B73, Mo17, Oh43,PH 207 and B37 under control, cold and heat conditions. Large numbers of genes that responded differentially to stress between parental inbred lines were identified.RNA sequencing was also performed on similar tissues of theF 1hybrids produced by crossing B73 and each of the three other inbred lines. By evaluating allele‐specific transcript abundance in theF 1hybrids, we were able to measure the abundance ofcis‐ andtrans‐ regulatory variation between genotypes for both steady‐state and stress‐responsive expression differences. Although examples oftrans‐ regulatory variation were observed,cis‐ regulatory variation was more common for both steady‐state and stress‐responsive expression differences. The genes withcis‐ allelic variation for response to cold or heat stress provided an opportunity to study the basis for regulatory diversity. -
Abstract Background Maize (
Zea Mays ) is one of the world’s most important crops. Hybrid maize lines resulted a major improvement in corn production in the previous and current centuries. Understanding the genetic mechanisms of the corn production associated traits greatly facilitate the development of superior hybrid varieties.Result In this study, four ear traits associated with corn production of Nested Association Mapping (NAM) population were analyzed using a full genetic model, and further, optimal genotype combinations and total genetic effects of current best lines, superior lines, and superior hybrids were predicted for each of the traits at four different locations. The analysis identified 21–34 highly significant SNPs (−
log 10 P > 5), with an estimated total heritability of 37.31–62.34%, while large contributions to variations was due to dominance, dominance-related epistasis, and environmental interaction effects ( 14.06% ~ 49.28%), indicating these factors contributed significantly to phenotypic variations of the ear traits. Environment-specific genetic effects were also discovered to be crucial for maize ear traits. There were four SNPs found for three ear traits: two for ear length and weight, and two for ear row number and length. Using the Enumeration method and the stepwise tuning technique, optimum multi-locus genotype combinations for superior lines were identified based on the information obtained from GWAS.$${h}_{D+}^2\hat{=}$$ Conclusions Predictions of genetic breeding values showed that different genotype combinations in different geographical regions may be better, and hybrid-line variety breeding with homozygote and heterozygote genotype combinations may have a greater potential to improve ear traits.
-
Summary The ability of plant somatic cells to dedifferentiate, form somatic embryos and regenerate whole plants
in vitro has been harnessed for both clonal propagation and as a key component of plant genetic engineering systems. Embryogenic culture response is significantly limited, however, by plant genotype in most species. This impedes advancements in both plant transformation‐based functional genomics research and crop improvement efforts. We utilized natural variation among maize inbred lines to genetically map somatic embryo generation potential in tissue culture and identify candidate genes underlying totipotency. Using a series of maize lines derived from crosses involving the culturable parent A188 and the non‐responsive parent B73, we identified a region on chromosome 3 associated with embryogenic culture response and focused on three candidate genes within the region based on genetic position and expression pattern. Two candidate genes showed no effect when ectopically expressed in B73, but the geneWox2a was found to induce somatic embryogenesis and embryogenic callus proliferation. Transgenic B73 cells with strong constitutive expression of the B73 and A188 coding sequences ofWox2a were found to produce somatic embryos at similar frequencies, demonstrating that sufficient expression of either allele could rescue the embryogenic culture phenotype. Transgenic B73 plants were regenerated from the somatic embryos without chemical selection and no pleiotropic effects were observed in theWox2a overexpression lines in the regenerated T0 plants or in the two independent events which produced T1 progeny. In addition to linking natural variation in tissue culture response toWox2a , our data support the utility ofWox2a in enabling transformation of recalcitrant genotypes. -
Abstract Motivation Alternative splicing generates multiple isoforms from a single gene, greatly increasing the functional diversity of a genome. Although gene functions have been well studied, little is known about the specific functions of isoforms, making accurate prediction of isoform functions highly desirable. However, the existing approaches to predicting isoform functions are far from satisfactory due to at least two reasons: (i) unlike genes, isoform-level functional annotations are scarce. (ii) The information of isoform functions is concealed in various types of data including isoform sequences, co-expression relationship among isoforms, etc.
Results In this study, we present a novel approach, DIFFUSE (Deep learning-based prediction of IsoForm FUnctions from Sequences and Expression), to predict isoform functions. To integrate various types of data, our approach adopts a hybrid framework by first using a deep neural network (DNN) to predict the functions of isoforms from their genomic sequences and then refining the prediction using a conditional random field (CRF) based on co-expression relationship. To overcome the lack of isoform-level ground truth labels, we further propose an iterative semi-supervised learning algorithm to train both the DNN and CRF together. Our extensive computational experiments demonstrate that DIFFUSE could effectively predict the functions of isoforms and genes. It achieves an average area under the receiver operating characteristics curve of 0.840 and area under the precision–recall curve of 0.581 over 4184 GO functional categories, which are significantly higher than the state-of-the-art methods. We further validate the prediction results by analyzing the correlation between functional similarity, sequence similarity, expression similarity and structural similarity, as well as the consistency between the predicted functions and some well-studied functional features of isoform sequences.
Availability and implementation https://github.com/haochenucr/DIFFUSE.
Supplementary information Supplementary data are available at Bioinformatics online.