Pressure-induced structural changes in metallic glasses have been of great interest as they are expected to open new ways to synthesize novel materials with unexpected properties. Here, we investigated the effect of simultaneous high-pressure and high-temperature treatment on the structure and properties of a Zr50Cu40Al10metallic glass by in situ X-ray structure measurement and property analysis of the final material. We found the unusual formation of Cu-rich nanocrystals at high pressure and temperature, accompanied by significant strength and hardness enhancement. Based on reverse Monte Carlo modeling and molecular dynamics simulations, the structure of the metallic glass changed to a densely packed, chemically uniform configuration with high short-range and medium-range ordering at high pressure and temperature. These results show that high-pressure annealing processes provide a new way to improve and control properties without changing their composition.
Metallic glasses are expected to have quite tunable structures in their configuration space, without the strict constraints of a well-defined crystalline symmetry and large energy barriers separating different states in crystals. However, effectively modulating the structure of metallic glasses is rather difficult. Here, using complementary in situ synchrotron x-ray techniques, we reveal thermal-driven structural ordering in a Ce65Al10Co25metallic glass, and a reverse disordering process via a pressure-induced rejuvenation between two states with distinct structural order characteristics. Studies on other metallic glass samples with different compositions also show similar phenomena. Our findings demonstrate the feasibility of two-way structural tuning states in terms of their dramatic ordering and disordering far beyond the nearest-neighbor shells with the combination of temperature and pressure, extending accessible states of metallic glasses to unexplored configuration spaces.
more » « less- PAR ID:
- 10154200
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Metal-organic framework glasses feature unique thermal, structural, and chemical properties compared to traditional metallic, organic, and oxide glasses. So far, there is a lack of knowledge of their mechanical properties, especially toughness and strength, owing to the challenge in preparing large bulk glass samples for mechanical testing. However, a recently developed melting method enables fabrication of large bulk glass samples (>25 mm3) from zeolitic imidazolate frameworks. Here, fracture toughness (
K Ic) of a representative glass, namely ZIF-62 glass (Zn(C3H3N2)1.75(C7H5N2)0.25), is measured using single-edge precracked beam method and simulated using reactive molecular dynamics.K Icis determined to be ~0.1 MPa m0.5, which is even lower than that of brittle oxide glasses due to the preferential breakage of the weak coordinative bonds (Zn-N). The glass is found to exhibit an anomalous brittle-to-ductile transition behavior, considering its low fracture surface energy despite similar Poisson’s ratio to that of many ductile metallic and organic glasses. -
Abstract Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure‐induced disordering could require recognition of an order–disorder transition in solid‐state physics/chemistry and geophysics. Double perovskites Y2CoIrO6and Y2CoRuO6polymorphs synthesized at 0, 6, and 15 GPa show B‐site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long‐range ferrimagnetic ordering in the B‐site ordered samples are gradually overwhelmed by B‐site disorder. Theoretical calculations suggest that unusual unit‐cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2CoIrO6and Y2CoRuO6.
-
Abstract Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure‐induced disordering could require recognition of an order–disorder transition in solid‐state physics/chemistry and geophysics. Double perovskites Y2CoIrO6and Y2CoRuO6polymorphs synthesized at 0, 6, and 15 GPa show B‐site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long‐range ferrimagnetic ordering in the B‐site ordered samples are gradually overwhelmed by B‐site disorder. Theoretical calculations suggest that unusual unit‐cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2CoIrO6and Y2CoRuO6.
-
Abstract Lightning‐induced volcanic spherules (LIVS) are glasses produced by the rapid melting and solidification of molten volcanic ash grains. High temperatures generated by lightning will alter the physical and chemical properties of minerals exposed to the discharge. Laboratory experiments reveal that LIVS glass composition varies depending on the starting material, exhibiting heterogeneous compositional features common in other glasses created by cloud‐to‐ground lightning, nuclear explosions, and high velocity impact events. This study uses scanning electron microscopy, energy dispersive spectroscopy, and Raman spectroscopy to investigate the structure and Raman signatures of lightning‐induced glass spherules manufactured from five igneous minerals (<32 μm powders of albite, labradorite, augite, hornblende, and magnetite). LIVS were created through high‐current impulse experiments using peak currents of 25 and 40 kA. Analysis of the post‐experimental albite, labradorite, augite, and hornblende LIVS reveal primarily homogeneous silicate or aluminosilicate glasses with limited heterogeneity. Their amorphous Raman spectra are comparable to rhyolitic and mafic natural glasses along with Na2O‐K2O‐Al2O3‐SiO2, CaCO3‐Al2O3‐SiO2,and CaO‐MgO‐SiO2synthetic glass networks. A few of the augite and hornblende LIVS spectra exhibit premelting effects, which occur below the melting point and represent the onset of cation disordering in phases that remain crystalline. Magnetite samples produced crystal‐rich, glass‐poor LIVS characterized by the growth of dendritic microcrystals and crystalline spectra that also contain a few bands alluding to the composition of their silicate–phosphate glass matrix. By understanding these chemical changes induced by lightning, we can extract information from other types of glasses produced during high temperature, short duration events.