skip to main content


Title: Nonreciprocal directional dichroism of a chiral magnet in the visible range
Abstract

Nonreciprocal directional dichroism is an unusual light–matter interaction that gives rise to diode-like behavior in low-symmetry materials. The chiral varieties are particularly scarce due to the requirements for strong spin–orbit coupling, broken time-reversal symmetry, and a chiral axis. Here we bring together magneto-optical spectroscopy and first-principles calculations to reveal high-energy, broadband nonreciprocal directional dichroism in Ni3TeO6with special focus on behavior in the metamagnetic phase above 52 T. In addition to demonstrating this effect in the magnetochiral configuration, we explore the transverse magnetochiral orientation in which applied field and light propagation are orthogonal to the chiral axis and, by so doing, uncover an additional configuration with a unique nonreciprocal response in the visible part of the spectrum. In a significant conceptual advance, we use first-principles methods to analyze how the Ni2+d-to-don-site excitations develop magneto-electric character and present a microscopic model that unlocks the door to theory-driven discovery of chiral magnets with nonreciprocal properties.

 
more » « less
NSF-PAR ID:
10154209
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Materials
Volume:
5
Issue:
1
ISSN:
2397-4648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The recent discovery of magnetism in atomically thin layers of van der Waals crystals has created great opportunities for exploring light–matter interactions and magneto-optical phenomena in the two-dimensional limit. Optical and magneto-optical experiments have provided insights into these topics, revealing strong magnetic circular dichroism and giant Kerr signals in atomically thin ferromagnetic insulators. However, the nature of the giant magneto-optical responses and their microscopic mechanism remain unclear. Here, by performing first-principlesGWand Bethe-Salpeter equation calculations, we show that excitonic effects dominate the optical and magneto-optical responses in the prototypical two-dimensional ferromagnetic insulator, CrI3. We simulate the Kerr and Faraday effects in realistic experimental setups, and based on which we predict the sensitive frequency- and substrate-dependence of magneto-optical responses. These findings provide physical understanding of the phenomena as well as potential design principles for engineering magneto-optical and optoelectronic devices using two-dimensional magnets.

     
    more » « less
  2. Abstract

    While 3d-containing materials display strong electron correlations, narrow band widths, and robust magnetism, 5dsystems are recognized for strong spin–orbit coupling, increased hybridization, and more diffuse orbitals. Combining these properties leads to novel behavior. Sr3NiIrO6, for example, displays complex magnetism and ultra-high coercive fields—up to an incredible 55 T. Here, we combine infrared and optical spectroscopies with high-field magnetization and first-principles calculations to explore the fundamental excitations of the lattice and related coupling processes including spin–lattice and electron–phonon mechanisms. Magneto-infrared spectroscopy reveals spin–lattice coupling of three phonons that modulate the Ir environment to reduce the energy required to modify the spin arrangement. While these modes primarily affect exchange within the chains, analysis also uncovers important inter-chain motion. This provides a mechanism by which inter-chain interactions can occur in the developing model for ultra-high coercivity. At the same time, analysis of the on-site Ir4+excitations reveals vibronic coupling and extremely large crystal field parameters that lead to at2g-derived low-spin state for Ir. These findings highlight the spin–charge–lattice entanglement in Sr3NiIrO6and suggest that similar interactions may take place in other 3d/5dhybrids.

     
    more » « less
  3. Abstract

    Chirality and polarity are the two most important and representative symmetry‐dependent properties. For polar structures, all the twofold axes perpendicular to the principal axis of symmetry should be removed. For chiral structures, all the mirror‐related symmetries and inversion axes should be removed. Especially for duality (polarity and chirality), all of the above symmetries should be broken and that also represents the highest‐level challenge. Herein, a new symmetry‐breaking strategy that employs heteroanionic groups to construct hourglass‐like [Sr3OGeS3]2+and [Sr3SGeS3]2+groups to design and synthesize a new oxychalcogenide Sr18Ge9O5S31with chiral‐polar duality is proposed. The presence of two enantiomers of Sr18Ge9O5S31is confirmed by the single‐crystal X‐ray diffraction. Its optical activity and ferroelectricity are also studied by solid‐state circular dichroism spectroscopy and piezoresponse force microscopy, respectively. Further property measurements show that Sr18Ge9O5S31possesses excellent nonlinear optical properties, including the strong second harmonic generation efficiency (≈2.5 × AGS), large bandgap (3.61 eV), and wide mid‐infrared transparent region (≈15.3 µm). These indicate that the unique microstructure groups of heteroanionic materials are conducive to realizing symmetry‐breaking and are able to provide some inspiration for exploring the chiral‐polar duality materials.

     
    more » « less
  4. Broken spatial and time reversal symmetries in materials often give rise to new emergent phenomena in the interaction between light and matter. The combination of chirality and broken time reversal symmetry in a magnetic field leads to magneto–chiral phenomena, such as the nonreciprocity of transmission. Here, we construct a terahertz hybrid metamaterial that combines the natural optical activity of a chiral metallic gammadion bilayer and the magneto-optical activity of semiconductor indium antimonide in a magnetic field. We report a resonant magneto–chiral effect that leads to polarization-independent nonreciprocal optical transmittance. Furthermore, we discover a magneto-optical Faraday effect that is resonantly controlled by the natural optical activity of the chiral gammadion bilayer. Unlike optical activity due to chirality, the novel Faraday effect is odd under time reversal. Both phenomena are activated by a modest magnetic field, which may open doors for their potential applications in polarization-independent optical isolation and highly efficient polarization control at terahertz frequencies.

     
    more » « less
  5. Abstract

    We investigate high‐valent oxygen redox in the positive Na‐ion electrode P2‐Na0.67−x[Fe0.5Mn0.5]O2(NMF) where Fe is partially substituted with Cu (P2‐Na0.67−x[Mn0.66Fe0.20Cu0.14]O2, NMFC) or Ni (P2‐Na0.67−x[Mn0.65Fe0.20Ni0.15]O2, NMFN). From combined analysis of resonant inelastic X‐ray scattering and X‐ray near‐edge structure with electrochemical voltage hysteresis and X‐ray pair distribution function profiles, we correlate structural disorder with high‐valent oxygen redox and its improvement by Ni or Cu substitution. Density of states calculations elaborate considerable anionic redox in NMF and NMFC without the widely accepted requirement of an A‐O‐A′ local configuration in the pristine materials (where A=Na and A′=Li, Mg, vacancy, etc.). We also show that the Jahn–Teller nature of Fe4+and the stabilization mechanism of anionic redox could determine the extent of structural disorder in the materials. These findings shed light on the design principles in TM and anion redox for positive electrodes to improve the performance of Na‐ion batteries.

     
    more » « less