skip to main content


Title: Ollivier-Ricci Curvature-Based Method to Community Detection in Complex Networks
Abstract

Identification of community structures in complex network is of crucial importance for understanding the system’s function, organization, robustness and security. Here, we present a novel Ollivier-Ricci curvature (ORC) inspired approach to community identification in complex networks. We demonstrate that the intrinsic geometric underpinning of the ORC offers a natural approach to discover inherent community structures within a network based on interaction among entities. We develop an ORC-based community identification algorithm based on the idea of sequential removal of negatively curved edges symptomatic of high interactions (e.g., traffic, attraction). To illustrate and compare the performance with other community identification methods, we examine the ORC-based algorithm with stochastic block model artificial networks and real-world examples ranging from social to drug-drug interaction networks. The ORC-based algorithm is able to identify communities with either better or comparable performance accuracy and to discover finer hierarchical structures of the network. This opens new geometric avenues for analysis of complex networks dynamics.

 
more » « less
NSF-PAR ID:
10154226
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cellular biological networks represent the molecular interactions that shape function of living cells. Uncovering the organization of a biological network requires efficient and accurate algorithms to determine the components, termed communities, underlying specific processes. Detecting functional communities is challenging because reconstructed biological networks are always incomplete due to technical bias and biological complexity, and the evaluation of putative communities is further complicated by a lack of known ground truth. To address these challenges, we developed a geometric-based detection framework based on Ollivier-Ricci curvature to exploit information about network topology to perform community detection from partially observed biological networks. We further improved this approach by integrating knowledge of gene function, termed side information, into the Ollivier-Ricci curvature algorithm to aid in community detection. This approach identified essential conserved and varied biological communities from partially observedArabidopsisprotein interaction datasets better than the previously used methods. We show that Ollivier-Ricci curvature with side information identified an expanded auxin community to include an important protein stability complex, the Cop9 signalosome, consistent with previous reported links to auxin response and root development. The results show that community detection based on Ollivier-Ricci curvature with side information can uncover novel components and novel communities in biological networks, providing novel insight into the organization and function of complex networks.

     
    more » « less
  2. Abstract

    Many complex networks in the real world have community structures – groups of well-connected nodes with important functional roles. It has been well recognized that the identification of communities bears numerous practical applications. While existing approaches mainly apply statistical or graph theoretical/combinatorial methods for community detection, in this paper, we present a novel geometric approach which  enables us to borrow powerful classical geometric methods and properties. By considering networks as geometric objects and communities in a network as a geometric decomposition, we apply curvature and discrete Ricci flow, which have been used to decompose smooth manifolds with astonishing successes in mathematics, to break down communities in networks. We  tested our method on networks with ground-truth community structures, and experimentally confirmed the effectiveness of this geometric approach.

     
    more » « less
  3. Abstract

    Transcriptome studies that provide temporal information about transcript abundance facilitate identification of gene regulatory networks (GRNs). Inferring GRNs from time series data using computational modeling remains a central challenge in systems biology. Commonly employed clustering algorithms identify modules of like-responding genes but do not provide information on how these modules are interconnected. These methods also require users to specify parameters such as cluster number and size, adding complexity to the analysis. To address these challenges, we used a recently developed algorithm, partitioned local depth (PaLD), to generate cohesive networks for 4 time series transcriptome datasets (3 hormone and 1 abiotic stress dataset) from the model plant Arabidopsis thaliana. PaLD provided a cohesive network representation of the data, revealing networks with distinct structures and varying numbers of connections between transcripts. We utilized the networks to make predictions about GRNs by examining local neighborhoods of transcripts with highly similar temporal responses. We also partitioned the networks into groups of like-responding transcripts and identified enriched functional and regulatory features in them. Comparison of groups to clusters generated by commonly used approaches indicated that these methods identified modules of transcripts that have similar temporal and biological features, but also identified unique groups, suggesting that a PaLD-based approach (supplemented with a community detection algorithm) can complement existing methods. These results revealed that PaLD could sort like-responding transcripts into biologically meaningful neighborhoods and groups while requiring minimal user input and producing cohesive network structure, offering an additional tool to the systems biology community to predict GRNs.

     
    more » « less
  4. <bold>Abstract</bold>

    Gene regulatory mechanisms (GRMs) control the formation of spatial and temporal expression patterns that can serve as regulatory signals for the development of complex shapes. Synthetic developmental biology aims to engineer such genetic circuits for understanding and producing desired multicellular spatial patterns. However, designing synthetic GRMs for complex, multi-dimensional spatial patterns is a current challenge due to the nonlinear interactions and feedback loops in genetic circuits. Here we present a methodology to automatically design GRMs that can produce any given two-dimensional spatial pattern. The proposed approach uses two orthogonal morphogen gradients acting as positional information signals in a multicellular tissue area or culture, which constitutes a continuous field of engineered cells implementing the same designed GRM. To efficiently design both the circuit network and the interaction mechanisms—including the number of genes necessary for the formation of the target spatial pattern—we developed an automated algorithm based on high-performance evolutionary computation. The tolerance of the algorithm can be configured to design GRMs that are either simple to produce approximate patterns or complex to produce precise patterns. We demonstrate the approach by automatically designing GRMs that can produce a diverse set of synthetic spatial expression patterns by interpreting just two orthogonal morphogen gradients. The proposed framework offers a versatile approach to systematically design and discover complex genetic circuits producing spatial patterns.

     
    more » « less
  5. Networks or graphs provide a natural and generic way for modeling rich structured data. Recent research on graph analysis has been focused on representation learning, of which the goal is to encode the network structures into distributed embedding vectors, so as to enable various downstream applications through off-the-shelf machine learning. However, existing methods mostly focus on node-level embedding, which is insufficient for subgraph analysis. Moreover, their leverage of network structures through path sampling or neighborhood preserving is implicit and coarse. Network motifs allow graph analysis in a finer granularity, but existing methods based on motif matching are limited to enumerated simple motifs and do not leverage node labels and supervision. In this paper, we develop NEST, a novel hierarchical network embedding method combining motif filtering and convolutional neural networks. Motif-based filtering enables NEST to capture exact small structures within networks, and convolution over the filtered embedding allows it to fully explore complex substructures and their combinations. NEST can be trivially applied to any domain and provide insight into particular network functional blocks. Extensive experiments on protein function prediction, drug toxicity prediction and social network community identification have demonstrated its effectiveness and efficiency. 
    more » « less