skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrated solid-state NMR and molecular dynamics modeling determines membrane insertion of human β-defensin analog
Abstract Human β-defensins (hBD) play central roles in antimicrobial activities against various microorganisms and in immune-regulation. These peptides perturb phospholipid membranes for function, but it is not well understood how defensins approach, insert and finally disrupt membranes on the molecular level. Here we show that hBD-3 analogs interact with lipid bilayers through a conserved surface that is formed by two adjacent loops in the solution structure. By integrating a collection of13C,1H and31P solid-state NMR methods with long-term molecular dynamic simulations, we reveal that membrane-binding rigidifies the peptide, enhances structural polymorphism, and promotes β-strand conformation. The peptide colocalizes with negatively charged lipids, confines the headgroup motion, and deforms membrane into smaller, ellipsoidal vesicles. This study designates the residue-specific, membrane-bound topology of hBD-3 analogs, serves as the basis for further elucidating the function-relevant structure and dynamics of other defensins, and facilitates the development of defensin-mimetic antibiotics, antifungals, and anti-inflammatories.  more » « less
Award ID(s):
1833040
PAR ID:
10154246
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Volume:
2
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cholesterol is an integral component of eukaryotic cell membranes and a key molecule in controlling membrane fluidity, organization, and other physicochemical parameters. It also plays a regulatory function in antibiotic drug resistance and the immune response of cells against viruses, by stabilizing the membrane against structural damage. While it is well understood that, structurally, cholesterol exhibits a densification effect on fluid lipid membranes, its effects on membrane bending rigidity are assumed to be nonuniversal; i.e., cholesterol stiffens saturated lipid membranes, but has no stiffening effect on membranes populated by unsaturated lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). This observation presents a clear challenge to structure–property relationships and to our understanding of cholesterol-mediated biological functions. Here, using a comprehensive approach—combining neutron spin-echo (NSE) spectroscopy, solid-state deuterium NMR (2H NMR) spectroscopy, and molecular dynamics (MD) simulations—we report that cholesterol locally increases the bending rigidity of DOPC membranes, similar to saturated membranes, by increasing the bilayer’s packing density. All three techniques, inherently sensitive to mesoscale bending fluctuations, show up to a threefold increase in effective bending rigidity with increasing cholesterol content approaching a mole fraction of 50%. Our observations are in good agreement with the known effects of cholesterol on the area-compressibility modulus and membrane structure, reaffirming membrane structure–property relationships. The current findings point to a scale-dependent manifestation of membrane properties, highlighting the need to reassess cholesterol’s role in controlling membrane bending rigidity over mesoscopic length and time scales of important biological functions, such as viral budding and lipid–protein interactions. 
    more » « less
  2. null (Ed.)
    Abstract Background Though many plant defensins exhibit antibacterial activity, little is known about their antibacterial mode of action (MOA). Antimicrobial peptides with a characterized MOA induce the expression of multiple bacterial outer membrane modifications, which are required for resistance to these membrane-targeting peptides. Mini-Tn 5-lux mutant strains of Pseudomonas aeruginosa with Tn insertions disrupting outer membrane protective modifications were assessed for sensitivity against plant defensin peptides. These transcriptional lux reporter strains were also evaluated for lux gene expression in response to sublethal plant defensin exposure. Also, a plant pathogen, Pseudomonas syringae pv. syringae was modified through transposon mutagenesis to create mutants that are resistant to in vitro MtDef4 treatments. Results Plant defensins displayed specific and potent antibacterial activity against strains of P. aeruginosa . A defensin from Medicago truncatula , MtDef4, induced dose-dependent gene expression of the aminoarabinose modification of LPS and surface polycation spermidine production operons. The ability for MtDef4 to damage bacterial outer membranes was also verified visually through fluorescent microscopy. Another defensin from M. truncatula , MtDef5, failed to induce lux gene expression and limited outer membrane damage was detected with fluorescent microscopy. The transposon insertion site on MtDef4 resistant P. syringae pv. syringae mutants was sequenced, and modifications of ribosomal genes were identified to contribute to enhanced resistance to plant defensin treatments. Conclusions MtDef4 damages the outer membrane similar to polymyxin B, which stimulates antimicrobial peptide resistance mechanisms to plant defensins. MtDef5, appears to have a different antibacterial MOA. Additionally, the MtDef4 antibacterial mode of action may also involve inhibition of translation. 
    more » « less
  3. Peptide-induced disruption of lipid membranes is central to both amyloid diseases and the activity of antimicrobial peptides. Here, we combine all-atom molecular dynamics simulations with biophysical experiments to investigate how four amphipathic peptides interact with lipid bilayers. All peptides adsorb on the membrane surface. Peptide M01 [Ac-(FKFE)2-NH2] self-assembles into β-sheet nanofibrils that span both leaflets of the membrane, creating water-permeable channels. The other three peptides adopt α-helical structures at the water–lipid interface. Peptide M02 [Ac-FFKKFFEE-NH2], a sequence isomer of M01, does not form β-sheet aggregates and is too short to span the bilayer, resulting in no observable water permeation across the membrane. Peptides M03 and M04 are α-helical isomers long enough to span the bilayer, with a polar face that allows the penetration of water deep inside the membrane. For the M03 peptide [Ac-(FFKKFFEE)2-NH2], insertion into the bilayer starts with the nonpolar N-terminal amino acids penetrating the hydrophobic core of the bilayer, while electrostatic interactions hold negative residues at the C-terminus on the membrane surface. The M04 peptide, [Ac-FFKKFFEEFKKFFEEF-NH2], is made by relocating a single nonpolar residue from the central region of M03 to the C-terminus. This nonpolar residue becomes unfavorably exposed to the solvent upon insertion of the N-terminal region of the peptide into the membrane. Consequently, higher concentrations of M04 peptides are required to induce water permeation compared to M03. Overall, our comparative analysis reveals how subtle rearrangements of polar and nonpolar residues modulate peptide-induced water permeation. This provides mechanistic insights relevant to amyloid pathology and antimicrobial peptide design. 
    more » « less
  4. Accumulation of protein-based (Aβ) aggregates on cellular membranes with varying structural properties is commonly recognized as the key step in Alzheimer's pathogenesis. But experimental and computational challenges have made this biophysical characterization difficult. In particular, studies connecting biological membrane organization and Aβ aggregation are limited. While experiments have suggested that an increased membrane curvature results in faster Aβ peptide aggregation in the context of Alzheimer's disease, a mechanistic explanation for this relation is missing. In this work, we are leveraging molecular simulations with a physics-based coarse grained model to address and understand the relationships between curved cellular membranes and aggregation of a model template peptide Aβ 16–22. In agreement with experimental results, our simulations also suggest a positive correlation between increased peptide aggregation and membrane curvature. More curved membranes have higher lipid packing defects that engage peptide hydrophobic groups and promote faster diffusion leading to peptide fibrillar structures. In addition, we curated the effects of peptide aggregation on the membrane's structure and organization. Interfacial peptide aggregation results in heterogeneous headgroup–peptide interactions and an induced crowding effect at the lipid headgroup region, leading to a more ordered headgroup region and disordered lipid-tails at the membrane core. This work presents a mechanistic and morphological overview of the relationships between the biomembrane local structure and organization, and Aβ peptide aggregation. 
    more » « less
  5. Amyloid aggregation and microbial infection are considered as pathological risk factors for developing amyloid diseases, including Alzheimer's disease (AD), type II diabetes (T2D), Parkinson's disease (PD), and medullary thyroid carcinoma (MTC). Due to the multifactorial nature of amyloid diseases, single-target drugs and treatments have mostly failed to inhibit amyloid aggregation and microbial infection simultaneously, thus leading to marginal benefits for amyloid inhibition and medical treatments. Herein, we proposed and demonstrated a new “anti-amyloid and antimicrobial hypothesis” to discover two host-defense antimicrobial peptides of α-defensins containing β-rich structures (human neutrophil peptide of HNP-1 and rabbit neutrophil peptide of NP-3A), which have demonstrated multi-target, sequence-independent functions to (i) prevent the aggregation and misfolding of different amyloid proteins of amyloid-β (Aβ, associated with AD), human islet amyloid polypeptide (hIAPP, associated with T2D), and human calcitonin (hCT, associated with MTC) at sub-stoichiometric concentrations, (ii) reduce amyloid-induced cell toxicity, and (iii) retain their original antimicrobial activity upon the formation of complexes with amyloid peptides. Further structural analysis showed that the sequence-independent amyloid inhibition function of α-defensins mainly stems from their cross-interactions with amyloid proteins via β-structure interactions. The discovery of antimicrobial peptides containing β-structures to inhibit both microbial infection and amyloid aggregation greatly expands the new therapeutic potential of antimicrobial peptides as multi-target amyloid inhibitors for better understanding pathological causes and treatments of amyloid diseases. 
    more » « less