skip to main content


Title: Multiple intertwined pairing states and temperature-sensitive gap anisotropy for superconductivity at a nematic quantum-critical point
Abstract

The proximity of many strongly correlated superconductors to density-wave or nematic order has led to an extensive search for fingerprints of pairing mediated by dynamical quantum-critical (QC) fluctuations of the corresponding order parameter. Here we study anisotropics-wave superconductivity induced by anisotropic QC dynamical nematic fluctuations. We solve the non-linear gap equation for the pairing gap$$\Delta (\theta ,{\omega }_{m})$$Δ(θ,ωm)and show that its angular dependence strongly varies below$${T}_{{\rm{c}}}$$Tc. We show that this variation is a signature of QC pairing and comes about because there are multiples-wave pairing instabilities with closely spaced transition temperatures$${T}_{{\rm{c}},n}$$Tc,n. Taken alone, each instability would produce a gap$$\Delta (\theta ,{\omega }_{m})$$Δ(θ,ωm)that changes sign$$8n$$8ntimes along the Fermi surface. We show that the equilibrium gap$$\Delta (\theta ,{\omega }_{m})$$Δ(θ,ωm)is a superposition of multiple components that are nonlinearly induced below the actual$${T}_{{\rm{c}}}={T}_{{\rm{c}},0}$$Tc=Tc,0, and get resonantly enhanced at$$T={T}_{{\rm{c}},n}\ <\ {T}_{{\rm{c}}}$$T=Tc,n<Tc. This gives rise to strong temperature variation of the angular dependence of$$\Delta (\theta ,{\omega }_{m})$$Δ(θ,ωm). This variation progressively disappears away from a QC point.

 
more » « less
NSF-PAR ID:
10154251
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Materials
Volume:
4
Issue:
1
ISSN:
2397-4648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The free multiplicative Brownian motion$$b_{t}$$btis the large-Nlimit of the Brownian motion on$$\mathsf {GL}(N;\mathbb {C}),$$GL(N;C),in the sense of$$*$$-distributions. The natural candidate for the large-Nlimit of the empirical distribution of eigenvalues is thus the Brown measure of$$b_{t}$$bt. In previous work, the second and third authors showed that this Brown measure is supported in the closure of a region$$\Sigma _{t}$$Σtthat appeared in the work of Biane. In the present paper, we compute the Brown measure completely. It has a continuous density$$W_{t}$$Wton$$\overline{\Sigma }_{t},$$Σ¯t,which is strictly positive and real analytic on$$\Sigma _{t}$$Σt. This density has a simple form in polar coordinates:$$\begin{aligned} W_{t}(r,\theta )=\frac{1}{r^{2}}w_{t}(\theta ), \end{aligned}$$Wt(r,θ)=1r2wt(θ),where$$w_{t}$$wtis an analytic function determined by the geometry of the region$$\Sigma _{t}$$Σt. We show also that the spectral measure of free unitary Brownian motion$$u_{t}$$utis a “shadow” of the Brown measure of$$b_{t}$$bt, precisely mirroring the relationship between the circular and semicircular laws. We develop several new methods, based on stochastic differential equations and PDE, to prove these results.

     
    more » « less
  2. Abstract

    The azimuthal ($$\Delta \varphi $$Δφ) correlation distributions between heavy-flavor decay electrons and associated charged particles are measured in pp and p–Pb collisions at$$\sqrt{s_{\mathrm{{NN}}}} = 5.02$$sNN=5.02TeV. Results are reported for electrons with transverse momentum$$44<pT<16$$\textrm{GeV}/c$$GeV/c and pseudorapidity$$|\eta |<0.6$$|η|<0.6. The associated charged particles are selected with transverse momentum$$11<pT<7$$\textrm{GeV}/c$$GeV/c, and relative pseudorapidity separation with the leading electron$$|\Delta \eta | < 1$$|Δη|<1. The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near- and away-side peaks, respectively. The results from p–Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The$$\Delta \varphi $$Δφdistribution and the peak observables in pp and p–Pb collisions are compared with calculations from various Monte Carlo event generators.

     
    more » « less
  3. Abstract

    It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.arXiv:2010.09793) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators$$L_{\beta ,\gamma } =- {\text {div}}D^{d+1+\gamma -n} \nabla $$Lβ,γ=-divDd+1+γ-nassociated to a domain$$\Omega \subset {\mathbb {R}}^n$$ΩRnwith a uniformly rectifiable boundary$$\Gamma $$Γof dimension$$d < n-1$$d<n-1, the now usual distance to the boundary$$D = D_\beta $$D=Dβgiven by$$D_\beta (X)^{-\beta } = \int _{\Gamma } |X-y|^{-d-\beta } d\sigma (y)$$Dβ(X)-β=Γ|X-y|-d-βdσ(y)for$$X \in \Omega $$XΩ, where$$\beta >0$$β>0and$$\gamma \in (-1,1)$$γ(-1,1). In this paper we show that the Green functionGfor$$L_{\beta ,\gamma }$$Lβ,γ, with pole at infinity, is well approximated by multiples of$$D^{1-\gamma }$$D1-γ, in the sense that the function$$\big | D\nabla \big (\ln \big ( \frac{G}{D^{1-\gamma }} \big )\big )\big |^2$$|D(ln(GD1-γ))|2satisfies a Carleson measure estimate on$$\Omega $$Ω. We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the “magical distance function from David et al. (Duke Math J, to appear).

     
    more » « less
  4. Abstract

    We consider a model of electrons at zero temperature, with a repulsive interaction which is a function of the energy transfer. Such an interaction can arise from the combination of electron–electron repulsion at high energies and the weaker electron–phonon attraction at low energies. As shown in previous works, superconductivity can develop despite the overall repulsion due to the energy dependence of the interaction, but the gap Δ(ω) must change sign at some (imaginary) frequencyω0to counteract the repulsion. However, when the constant repulsive part of the interaction is increased, a quantum phase transition towards the normal state occurs. We show that, as the phase transition is approached, Δ andω0must vanish in a correlated way such that$$1/| \log [{{\Delta }}(0)]| \sim {\omega }_{0}^{2}$$1/log[Δ(0)]~ω02. We discuss the behavior of phase fluctuations near this transition and show that the correlation between Δ(0) andω0locks the phase stiffness to a non-zero value.

     
    more » « less
  5. Abstract

    We study the distribution over measurement outcomes of noisy random quantum circuits in the regime of low fidelity, which corresponds to the setting where the computation experiences at least one gate-level error with probability close to one. We model noise by adding a pair of weak, unital, single-qubit noise channels after each two-qubit gate, and we show that for typical random circuit instances, correlations between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the corresponding noiseless output distribution$$p_{\text {ideal}}$$pidealshrink exponentially with the expected number of gate-level errors. Specifically, the linear cross-entropy benchmarkFthat measures this correlation behaves as$$F=\text {exp}(-2s\epsilon \pm O(s\epsilon ^2))$$F=exp(-2sϵ±O(sϵ2)), where$$\epsilon $$ϵis the probability of error per circuit location andsis the number of two-qubit gates. Furthermore, if the noise is incoherent—for example, depolarizing or dephasing noise—the total variation distance between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the uniform distribution$$p_{\text {unif}}$$punifdecays at precisely the same rate. Consequently, the noisy output distribution can be approximated as$$p_{\text {noisy}}\approx Fp_{\text {ideal}}+ (1-F)p_{\text {unif}}$$pnoisyFpideal+(1-F)punif. In other words, although at least one local error occurs with probability$$1-F$$1-F, the errors are scrambled by the random quantum circuit and can be treated as global white noise, contributing completely uniform output. Importantly, we upper bound the average total variation error in this approximation by$$O(F\epsilon \sqrt{s})$$O(Fϵs). Thus, the “white-noise approximation” is meaningful when$$\epsilon \sqrt{s} \ll 1$$ϵs1, a quadratically weaker condition than the$$\epsilon s\ll 1$$ϵs1requirement to maintain high fidelity. The bound applies if the circuit size satisfies$$s \ge \Omega (n\log (n))$$sΩ(nlog(n)), which corresponds to onlylogarithmic depthcircuits, and if, additionally, the inverse error rate satisfies$$\epsilon ^{-1} \ge {\tilde{\Omega }}(n)$$ϵ-1Ω~(n), which is needed to ensure errors are scrambled faster thanFdecays. The white-noise approximation is useful for salvaging the signal from a noisy quantum computation; for example, it was an underlying assumption in complexity-theoretic arguments that noisy random quantum circuits cannot be efficiently sampled classically, even when the fidelity is low. Our method is based on a map from second-moment quantities in random quantum circuits to expectation values of certain stochastic processes for which we compute upper and lower bounds.

     
    more » « less