skip to main content

Title: Alternative transcription cycle for bacterial RNA polymerase

RNA polymerases (RNAPs) transcribe genes through a cycle of recruitment to promoter DNA, initiation, elongation, and termination. After termination, RNAP is thought to initiate the next round of transcription by detaching from DNA and rebinding a new promoter. Here we use single-molecule fluorescence microscopy to observe individual RNAP molecules after transcript release at a terminator. Following termination, RNAP almost always remains bound to DNA and sometimes exhibits one-dimensional sliding over thousands of basepairs. Unexpectedly, the DNA-bound RNAP often restarts transcription, usually in reverse direction, thus producing an antisense transcript. Furthermore, we report evidence of this secondary initiation in live cells, using genome-wide RNA sequencing. These findings reveal an alternative transcription cycle that allows RNAP to reinitiate without dissociating from DNA, which is likely to have important implications for gene regulation.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Spo0A transcription factor is activated by phosphorylation in starvingBacillus subtiliscells. The activated Spo0A (Spo0A~P) regulates genes controlling entry into sporulation and appears to control mother‐cell‐specific gene expression after asymmetric division, but the latter remains elusive. Here, we found that Spo0A~P directly binds to three conserved DNA sequences (0A1‐3) in the promoter region of the mother cell‐specific lytic transglycosylase genespoIID, which is transcribed by σE‐RNA polymerase (RNAP) and negatively controlled by the SpoIIID transcription factor and required for forespore engulfment. Systematic mutagenesis of the 0A boxes revealed that the 0A1 and 0A2 boxes located upstream of the promoter positively control the transcription ofspoIID. In contrast, the 0A3 box located downstream of the promoter negatively controls the transcription ofspoIID. The mutated SpoIIID binding site located between the −35 and −10 promoter elements causes increased expression ofspoIIDand reduced sporulation. When the mutations of 0A1, 0A2, and IIID sites are combined, sporulation is restored. Collectively, our data suggest that the mother cell‐specificspoIIDexpression is precisely controlled by the coordination of three factors, Spo0A~P, SpoIIID, and σE‐RNAP, for proper sporulation. The conservation of this mechanism across spore‐forming species was discussed.

    more » « less
  2. Abstract

    Mitochondria play a central role in energy production and cellular metabolism. Mitochondria contain their own small genome (mitochondrial DNA, mtDNA) that carries the genetic instructions for proteins required for ATP synthesis. The mitochondrial proteome, including the mitochondrial transcriptional machinery, is subject to post‐translational modifications (PTMs), including acetylation and phosphorylation. We set out to determine whether PTMs of proteins associated with mtDNA may provide a potential mechanism for the regulation of mitochondrial gene expression. Here, we focus on mitochondrial ribosomal protein L12 (MRPL12), which is thought to stabilize mitochondrial RNA polymerase (POLRMT) and promote transcription. Numerous acetylation sites of MRPL12 were identified by mass spectrometry. We employed amino acid mimics of the acetylated (lysine to glutamine mutants) and deacetylated (lysine to arginine mutants) versions of MRPL12 to interrogate the role of lysine acetylation in transcription initiation in vitro and mitochondrial gene expression in HeLa cells. MRPL12 acetyl and deacetyl protein mimics were purified and assessed for their ability to impact mtDNA promoter binding of POLRMT. We analyzed mtDNA content and mitochondrial transcript levels in HeLa cells upon overexpression of acetyl and deacetyl mimics of MRPL12. Our results suggest that MRPL12 single‐site acetyl mimics do not change the mtDNA promoter binding ability of POLRMT or mtDNA content in HeLa cells. Individual acetyl mimics may have modest effects on mitochondrial transcript levels. We found that the mitochondrial deacetylase, Sirtuin 3, is capable of deacetylating MRPL12 in vitro, suggesting a potential role for dynamic acetylation controlling MRPL12 function in a role outside of the regulation of gene expression.

    more » « less
  3. The role of general transcription factor TFIIB in transcription extends well beyond its evolutionarily conserved function in initiation. Chromatin localization studies demonstrating binding of TFIIB to both the 5’ and 3’ ends of genes in a diverse set of eukaryotes strongly suggested a rather unexpected role of the factor in termination. TFIIB indeed plays a role in termination of transcription. TFIIB occupancy of the 3’ end is possibly due to its interaction with the termination factors residing there. Interaction of the promoter-bound TFIIB with factors occupying the 3’ end of a gene may be the basis of transcription-dependent gene looping. The proximity of the terminator-bound factors with the promoter in a gene loop has the potential to terminate promoter-initiated upstream anti-sense transcription thereby conferring promoter directionality. TFIIB, therefore, is emerging as a factor with pleiotropic roles in the transcription cycle. This could be the reason for preferential targeting of TFIIB by viruses. Further studies are needed to understand the critical role of TFIIB in viral pathogenesis in the context of its newly identified roles in termination, gene looping and promoter directionality. 
    more » « less
  4. Abstract Motivation

    Transcription by RNA polymerase is a highly dynamic process involving multiple distinct points of regulation. Nascent transcription assays are a relatively new set of high throughput techniques that measure the location of actively engaged RNA polymerase genome wide. Hence, nascent transcription is a rich source of information on the regulation of RNA polymerase activity. To fully dissect this data requires the development of stochastic models that can both deconvolve the stages of polymerase activity and identify significant changes in activity between experiments.


    We present a generative, probabilistic model of RNA polymerase that fully describes loading, initiation, elongation and termination. We fit this model genome wide and profile the enzymatic activity of RNA polymerase across various loci and following experimental perturbation. We observe striking correlation of predicted loading events and regulatory chromatin marks. We provide principled statistics that compute probabilities reminiscent of traveler’s and divergent ratios. We finish with a systematic comparison of RNA Polymerase activity at promoter versus non-promoter associated loci.

    Availability and Implementation

    Transcription Fit (Tfit) is a freely available, open source software package written in C/C ++ that requires GNU compilers 4.7.3 or greater. Tfit is available from GitHub (

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    more » « less
  5. Abstract

    Multiple RNA polymerases (RNAPs) transcribing a gene have been known to exhibit collective group behavior, causing the transcription elongation rate to increase with the rate of transcription initiation. Such behavior has long been believed to be driven by a physical interaction or ‘push’ between closely spaced RNAPs. However, recent studies have posited that RNAPs separated by longer distances may cooperate by modifying the DNA segment under transcription. Here, we present a theoretical model incorporating the mechanical coupling between RNAP translocation and the DNA torsional response. Using stochastic simulations, we demonstrate DNA supercoiling-mediated long-range cooperation between co-transcribing RNAPs. We find that inhibiting transcription initiation can slow down the already recruited RNAPs, in agreement with recent experimental observations, and predict that the average transcription elongation rate varies non-monotonically with the rate of transcription initiation. We further show that while RNAPs transcribing neighboring genes oriented in tandem can cooperate, those transcribing genes in divergent or convergent orientations can act antagonistically, and that such behavior holds over a large range of intergenic separations. Our model makes testable predictions, revealing how the mechanical interplay between RNAPs and the DNA they transcribe can govern transcriptional dynamics.

    more » « less