skip to main content


Title: Nitric oxide production and antioxidant function during viral infection of the coccolithophore Emiliania huxleyi
Abstract

Emiliania huxleyi is a globally important marine phytoplankton that is routinely infected by viruses. Understanding the controls on the growth and demise of E. huxleyi blooms is essential for predicting the biogeochemical fate of their organic carbon and nutrients. In this study, we show that the production of nitric oxide (NO), a gaseous, membrane-permeable free radical, is a hallmark of early-stage lytic infection in E. huxleyi by Coccolithoviruses, both in culture and in natural populations in the North Atlantic. Enhanced NO production was detected both intra- and extra-cellularly in laboratory cultures, and treatment of cells with an NO scavenger significantly reduced viral production. Pre-treatment of exponentially growing E. huxleyi cultures with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) prior to challenge with hydrogen peroxide (H2O2) led to greater cell survival, suggesting that NO may have a cellular antioxidant function. Indeed, cell lysates generated from cultures treated with SNAP and undergoing infection displayed enhanced ability to detoxify H2O2. Lastly, we show that fluorescent indicators of cellular ROS, NO, and death, in combination with classic DNA- and lipid-based biomarkers of infection, can function as real-time diagnostic tools to identify and contextualize viral infection in natural E. huxleyi blooms.

 
more » « less
NSF-PAR ID:
10154294
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
Volume:
13
Issue:
4
ISSN:
1751-7362
Format(s):
Medium: X Size: p. 1019-1031
Size(s):
["p. 1019-1031"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Emiliania huxleyi is a bloom-forming microalga that affects the global sulfur cycle by producing large amounts of dimethylsulfoniopropionate (DMSP) and its volatile metabolic product dimethyl sulfide. Top-down regulation of E. huxleyi blooms has been attributed to viruses and grazers; however, the possible involvement of algicidal bacteria in bloom demise has remained elusive. We demonstrate that a Roseobacter strain, Sulfitobacter D7, that we isolated from a North Atlantic E. huxleyi bloom, exhibited algicidal effects against E. huxleyi upon coculturing. Both the alga and the bacterium were found to co-occur during a natural E. huxleyi bloom, therefore establishing this host-pathogen system as an attractive, ecologically relevant model for studying algal-bacterial interactions in the oceans. During interaction, Sulfitobacter D7 consumed and metabolized algal DMSP to produce high amounts of methanethiol, an alternative product of DMSP catabolism. We revealed a unique strain-specific response, in which E. huxleyi strains that exuded higher amounts of DMSP were more susceptible to Sulfitobacter D7 infection. Intriguingly, exogenous application of DMSP enhanced bacterial virulence and induced susceptibility in an algal strain typically resistant to the bacterial pathogen. This enhanced virulence was highly specific to DMSP compared to addition of propionate and glycerol which had no effect on bacterial virulence. We propose a novel function for DMSP, in addition to its central role in mutualistic interactions among marine organisms, as a mediator of bacterial virulence that may regulate E. huxleyi blooms. 
    more » « less
  2. Abstract The blooming cosmopolitan coccolithophore Emiliania huxleyi and its viruses (EhVs) are a model for density-dependent virulent dynamics. EhVs commonly exhibit rapid viral reproduction and drive host death in high-density laboratory cultures and mesocosms that simulate blooms. Here we show that this system exhibits physiology-dependent temperate dynamics at environmentally relevant E. huxleyi host densities rather than virulent dynamics, with viruses switching from a long-term non-lethal temperate phase in healthy hosts to a lethal lytic stage as host cells become physiologically stressed. Using this system as a model for temperate infection dynamics, we present a template to diagnose temperate infection in other virus–host systems by integrating experimental, theoretical, and environmental approaches. Finding temperate dynamics in such an established virulent host–virus model system indicates that temperateness may be more pervasive than previously considered, and that the role of viruses in bloom formation and decline may be governed by host physiology rather than by host–virus densities. 
    more » « less
  3. Viruses that infect phytoplankton are abundant in all regions of the global ocean. Despite their ubiquity, little is understood regarding how biotic interactions can alter virus infection success as well as the fate of phytoplankton hosts. In previous work, the bacterially derived compound 2-heptyl-4-quinolone (HHQ) has been shown to protect the cosmopolitan coccolithophoreEmiliania huxleyifrom virus-induced mortality. The present study explores the potential mechanisms through which protection is conferred. Using a suite of transmission electron microscopy and physiological diagnostic staining techniques, we show that whenE. huxleyiis exposed to HHQ, viruses can gain entry into cells but viral replication and release is inhibited. These findings are supported by a smaller burst size, as well as lower infectious and total virus production when the host is treated with nanomolar concentrations of HHQ. Additionally, diagnostic staining results indicate that programmed cell death markers commonly associated with viral infection are not activated when infectedE. huxleyiare exposed to HHQ. Together, these results suggest that the ability of HHQ to inhibit infectious viral production protects the alga not from getting infected, but from cell lysis. This work identifies a new mechanistic role of bacterial quorum sensing molecules in mediating viral infections in marine microbial systems.

     
    more » « less
  4. Abstract

    Viral infection of phytoplankton is a pervasive mechanism of cell death and bloom termination, which leads to the production of dissolved and colloidal organic matter that can be aerosolized into the atmosphere. Earth-observing satellites can track the growth and death of phytoplankton blooms on weekly time scales but the impact of viral infection on the cloud forming potential of associated aerosols is largely unknown. Here, we determine the influence of viral-derived organic matter, purified viruses, and marine hydrogels on the cloud condensation nuclei activity of their aerosolized solutions, compared to organic exudates from healthy phytoplankton. Dissolved organic material derived from exponentially growing and infected cells of well-characterized eukaryotic phytoplankton host-virus systems, including viruses from diatoms, coccolithophores and chlorophytes, was concentrated, desalted, and nebulized to form aerosol particles composed of primarily of organic matter. Aerosols from infected phytoplankton cultures resulted in an increase in critical activation diameter and average molar mass in three out of five combinations evaluated, along with a decrease in organic kappa (hygroscopicity) compared to healthy cultures and seawater controls. The infected samples also displayed evidence of increased surface tension depression at realistic cloud water vapor supersaturations. Amending the samples with xanthan gum to simulate marine hydrogels increased variability in organic kappa and surface tension in aerosols with high organic to salt ratios. Our findings suggest that the pulses of increased dissolved organic matter associated with viral infection in surface waters may increase the molar mass of dissolved organic compounds relative to surface waters occupied by healthy phytoplankton or low phytoplankton biomass.

     
    more » « less
  5. Summary

    Coccolithoviruses(EhVs) are large, double‐stranded DNA‐containing viruses that infect the single‐celled, marine coccolithophoreEmiliania huxleyi. Given the cosmopolitan nature and global importance ofE. huxleyias a bloom‐forming, calcifying, photoautotroph,E. huxleyi–EhV interactions play a key role in oceanic carbon biogeochemistry. Virally‐encoded glycosphingolipids (vGSLs) are virulence factors that are produced by the activity of virus‐encoded serine palmitoyltransferase (SPT). Here, we characterize the dynamics, diversity and catalytic production of vGSLs in an array of EhV strains in relation to their SPT sequence composition and explore the hypothesis that they are a determinant of infectivity and host demise. vGSL production and diversity was positively correlated with increased virulence, virus replication rate and lytic infection dynamics in laboratory experiments, but they do not explain the success of less‐virulent EhVs in natural EhV communities. The majority of EhV‐derived SPT amplicon sequences associated with infected cells in the North Atlantic derived from slower infecting, less virulent EhVs. Our lab‐, field‐ and mathematical model‐based data and simulations support ecological scenarios whereby slow‐infecting, less‐virulent EhVs successfully compete in North Atlantic populations ofE. huxleyi, through either the preferential removal of fast‐infecting, virulent EhVs during active infection or by having access to a broader host range.

     
    more » « less