skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics
Abstract The progress of nanoparticle (NP)-based drug delivery has been hindered by an inability to establish structure-activity relationships in vivo. Here, using stable, monosized, radiolabeled, mesoporous silica nanoparticles (MSNs), we apply an integrated SPECT/CT imaging and mathematical modeling approach to understand the combined effects of MSN size, surface chemistry and routes of administration on biodistribution and clearance kinetics in healthy rats. We show that increased particle size from ~32- to ~142-nm results in a monotonic decrease in systemic bioavailability, irrespective of route of administration, with corresponding accumulation in liver and spleen. Cationic MSNs with surface exposed amines (PEI) have reduced circulation, compared to MSNs of identical size and charge but with shielded amines (QA), due to rapid sequestration into liver and spleen. However, QA show greater total excretion than PEI and their size-matched neutral counterparts (TMS). Overall, we provide important predictive functional correlations to support the rational design of nanomedicines.  more » « less
Award ID(s):
1716737
PAR ID:
10154295
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
9
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Drug delivery systems have renewed attention in recent years to achieve targeted delivery while decreasing toxic side effects. However, there are many factors that prevent optimal administration of drug delivery particles. For instance, protein corona formation and aggregation both decrease the circulation half‐life of drug delivery particles, leading to sequestration to the liver and spleen. Therefore, optimal surface modifications are needed to decrease protein corona formation and avoid aggregation. In this work, polystyrene particles were modified with multi‐arm and linear polyethylene glycol (PEG) to determine their aggregation profiles and protein corona formation. Multi‐arm PEGs were found to aggregate more than linear PEGs, due to the change in zeta potential from unreacted end groups, which may lead to shorter circulation half‐lives. Furthermore, the protein corona formation and composition were studied after different washing procedures, highlighting the importance of studying protein corona formation with undiluted blood plasma. 
    more » « less
  2. Abstract Platelet transfusions are used to treat idiopathic or drug-induced thrombocytopenia. Platelets are an expensive product in limited supply, with limited storage and distribution capabilities because they cannot be frozen. We have demonstrated that, in vitro, human megakaryocytic microparticles (huMkMPs) target human CD34+ hematopoietic stem and progenitor cells (huHSPCs) and induce their Mk differentiation and platelet biogenesis in the absence of thrombopoietin. In this study, we showed that, in vitro, huMkMPs can also target murine HSPCs (muHSPCs) to induce them to differentiate into megakaryocytes in the absence of thrombopoietin. Based on that, using wild-type BALB/c mice, we demonstrated that intravenously administering 2 × 106 huMkMPs triggered de novo murine platelet biogenesis to increase platelet levels up to 49% 16 hours after administration. huMkMPs also largely rescued low platelet levels in mice with induced thrombocytopenia 16 hours after administration by increasing platelet counts by 51%, compared with platelet counts in thrombocytopenic mice. Normalized on a tissue-mass basis, biodistribution experiments show that MkMPs localized largely to the bone marrow, lungs, and liver 24 hours after huMkMP administration. Beyond the bone marrow, CD41+ (megakaryocytes and Mk-progenitor) cells were frequent in lungs, spleen, and especially, liver. In the liver, infused huMKMPs colocalized with Mk progenitors and muHSPCs, thus suggesting that huMkMPs interact with muHSPCs in vivo to induce platelet biogenesis. Our data demonstrate the potential of huMkMPs, which can be stored frozen, to treat thrombocytopenias and serve as effective carriers for in vivo, target-specific cargo delivery to HSPCs. 
    more » « less
  3. Due to the theragnostic potential of mesoporous silica nanoparticles (MSNs), these were extensively investigated as a novel approach to improve clinical outcomes. Boasting an impressive array of formulations and modifications, MSNs demonstrate significant in vivo efficacy when used to identify or treat myriad malignant diseases in preclinical models. As MSNs continue transitioning into clinical trials, a thorough understanding of the characteristics of effective MSNs is necessary. This review highlights recent discoveries and advances in MSN understanding and technology. Specific focus is given to cancer theragnostic approaches using MSNs. Characteristics of MSNs such as size, shape, and surface properties are discussed in relation to effective nanomedicine practice and projected clinical efficacy. Additionally, tumor-targeting options used with MSNs are presented with extensive discussion on active-targeting molecules. Methods for decreasing MSN toxicity, improving site-specific delivery, and controlling release of loaded molecules are further explained. Challenges facing the field and translation to clinical environments are presented alongside potential avenues for continuing investigations. 
    more » « less
  4. Abstract We report synthesis of a radical scavenging aminated thermoplastic polymer through reactive extrusion of polyethyleneimine (PEI) with a polypropylene and polypropylene‐graft‐maleic anhydride (PP‐g‐MA) meltblend. The reaction was confirmed using acid orange 7 (AO7) amine density assay, toluidine blue O (TBO) carboxylic acid density assay, Fourier transform infrared spectroscopy (FTIR), and a migration assay. FTIR spectra revealed a reduction of the asymmetric stretching of the maleic anhydride (MA) carbonyl group at 1777 cm−1and the emergence of the maleimide carbonyl peak at 1702 cm−1. AO7 supported surface orientation of grafted amine groups by introduction of 7.22 nmol cm−2primary amines, corresponding to the reduction of surface carboxylic acids quantified by TBO from 12.46 nmol cm−2to 0.43 nmol cm−2. After incubation (40°C, 10 days) in ethanol, acetic acid, and water, < 0.1 mg cm−2PEI migrated from the materials, supporting the covalent nature of the grafting. Antioxidant activity was demonstrated exhibiting 5.90 and 4.31 nmol Troloxeqcm−2in aqueous and organic environments, respectively. Results indicate a successful condensation reaction during reactive extrusion, producing an aminated thermoplastic polymer with antioxidant activity for target applications such as food packaging, wastewater treatment, carbon capture, and others. 
    more » « less
  5. A significant barrier to the application of nanoparticles for precision medicine is the mononuclear phagocyte system (MPS), a diverse population of phagocytic cells primarily located within the liver, spleen and lymph nodes. The majority of nanoparticles are indiscriminately cleared by the MPS via macropinocytosis before reaching their intended targets, resulting in side effects and decreased efficacy. Here, we demonstrate that the biodistribution and desired tissue accumulation of targeted nanoparticles can be significantly enhanced by co-injection with polymeric micelles containing the actin depolymerizing agent latrunculin A. These macropinocytosis inhibitory nanoparticles (MiNP) were found to selectively inhibit non-specific uptake of a second “effector” nanoparticle in vitro without impeding receptor-mediated endocytosis. In tumor bearing mice, co-injection with MiNP in a single multi-nanoparticle formulation significantly increased the accumulation of folate-receptor targeted nanoparticles within tumors. Furthermore, subcutaneous co-administration with MiNP allowed effector nanoparticles to achieve serum levels that rivaled a standard intravenous injection. This effect was only observed if the effector nanoparticles were injected within 24 h following MiNP administration, indicating a temporary avoidance of MPS cells. Co-injection with MiNP therefore allows reversible evasion of the MPS for targeted nanoparticles and presents a previously unexplored method of modulating and improving nanoparticle biodistribution following subcutaneous administration. 
    more » « less