skip to main content


Title: ETS transcription factors induce a unique UV damage signature that drives recurrent mutagenesis in melanoma
Abstract

Recurrent mutations are frequently associated with transcription factor (TF) binding sites (TFBS) in melanoma, but the mechanism driving mutagenesis at TFBS is unclear. Here, we use a method called CPD-seq to map the distribution of UV-induced cyclobutane pyrimidine dimers (CPDs) across the human genome at single nucleotide resolution. Our results indicate that CPD lesions are elevated at active TFBS, an effect that is primarily due to E26 transformation-specific (ETS) TFs. We show that ETS TFs induce a unique signature of CPD hotspots that are highly correlated with recurrent mutations in melanomas, despite high repair activity at these sites. ETS1 protein renders its DNA binding targets extremely susceptible to UV damage in vitro, due to binding-induced perturbations in the DNA structure that favor CPD formation. These findings define a mechanism responsible for recurrent mutations in melanoma and reveal that DNA binding by ETS TFs is inherently mutagenic in UV-exposed cells.

 
more » « less
NSF-PAR ID:
10154306
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
9
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sequencing of melanomas has identified hundreds of recurrent mutations in both coding and non-coding DNA. These include a number of well-characterized oncogenic driver mutations, such as coding mutations in the BRAF and NRAS oncogenes, and non-coding mutations in the promoter of telomerase reverse transcriptase ( TERT ). However, the molecular etiology and significance of most of these mutations is unknown. Here, we use a new method known as CPD-capture-seq to map UV-induced cyclobutane pyrimidine dimers (CPDs) with high sequencing depth and single nucleotide resolution at sites of recurrent mutations in melanoma. Our data reveal that many previously identified drivers and other recurrent mutations in melanoma occur at CPD hotspots in UV-irradiated melanocytes, often associated with an overlapping binding site of an E26 transformation-specific (ETS) transcription factor. In contrast, recurrent mutations in the promoters of a number of known or suspected cancer genes are not associated with elevated CPD levels. Our data indicate that a subset of recurrent protein-coding mutations are also likely caused by ETS-induced CPD hotspots. This analysis indicates that ETS proteins profoundly shape the mutation landscape of melanoma and reveals a method for distinguishing potential driver mutations from passenger mutations whose recurrence is due to elevated UV damage. 
    more » « less
  2. Abstract

    Protein binding microarrays provide comprehensive information about the DNA binding specificities of transcription factors (TFs), and can be used to quantitatively predict the effects of DNA sequence variation on TF binding. There has also been substantial progress in dissecting the patterns of mutations, i.e., the mutational signatures, generated by different mutational processes. By combining these two layers of information we can investigate whether certain mutational processes tend to preferentially affect binding of particular classes of TFs. Such preferential alterations of binding might predispose to particular oncogenic pathways. We developed and implemented a method, termed Signature-QBiC, that integrates protein binding microarray data with the signatures of mutational processes, with the aim of predicting which TFs’ binding profiles are preferentially perturbed by particular mutational processes. We used Signature-QBiC to predict the effects of 47 signatures of mutational processes on 582 human TFs. Pathway analysis showed that binding of TFs involved in NOTCH1 signaling is strongly affected by the signatures of several mutational processes, including exposure to ultraviolet radiation. Additionally, toll-like-receptor signaling pathways are also vulnerable to disruption by this exposure. This study provides a novel overview of the effects of mutational processes on TF binding and the potential of these processes to activate oncogenic pathways through mutating TF binding sites.

     
    more » « less
  3. Short tandem repeats (STRs) are enriched in eukaryoticcis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)–DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites. 
    more » « less
  4. Abstract

    Many eukaryotic transcription factors (TF) form homodimer or heterodimer complexes to regulate gene expression. Dimerization of BASIC LEUCINE ZIPPER (bZIP) TFs are critical for their functions, but the molecular mechanism underlying the DNA binding and functional specificity of homo-versusheterodimers remains elusive. To address this gap, we present the double DNA Affinity Purification-sequencing (dDAP-seq) technique that maps heterodimer binding sites on endogenous genomic DNA. Using dDAP-seq we profile twenty pairs of C/S1 bZIP heterodimers and S1 homodimers inArabidopsisand show that heterodimerization significantly expands the DNA binding preferences of these TFs. Analysis of dDAP-seq binding sites reveals the function of bZIP9 in abscisic acid response and the role of bZIP53 heterodimer-specific binding in seed maturation. The C/S1 heterodimers show distinct preferences for the ACGT elements recognized by plant bZIPs and motifs resembling the yeast GCN4cis-elements. This study demonstrates the potential of dDAP-seq in deciphering the DNA binding specificities of interacting TFs that are key for combinatorial gene regulation.

     
    more » « less
  5. Background

    Sequence‐specific binding by transcription factors (TFs) plays a significant role in the selection and regulation of target genes. At the protein:DNA interface, amino acid side‐chains construct a diverse physicochemical network of specific and non‐specific interactions, and seemingly subtle changes in amino acid identity at certain positions may dramatically impact TF:DNA binding. Variation of these specificity‐determining residues (SDRs) is a major mechanism of functional divergence between TFs with strong structural or sequence homology.

    Methods

    In this study, we employed a combination of high‐throughput specificity profiling by SELEX and Spec‐seq, structural modeling, and evolutionary analysis to probe the binding preferences of winged helix‐turn‐helix TFs belonging to the OmpR sub‐family inEscherichia coli.

    Results

    We found thatE. coliOmpR paralogs recognize tandem, variably spaced repeats composed of “GT‐A” or “GCT”‐containing half‐sites. Some divergent sequence preferences observed within the “GT‐A” mode correlate with amino acid similarity; conversely, “GCT”‐based motifs were observed for a subset of paralogs with low sequence homology. Direct specificity profiling of a subset of OmpR homologues (CpxR, RstA, and OmpR) as well as predicted “SDR‐swap” variants revealed that individual SDRs may impact sequence preferences locally through direct contact with DNA bases or distally via the DNA backbone.

    Conclusions

    Overall, our work provides evidence for a common structural “code” for sequence‐specific wHTH‐DNA interactions, and demonstrates that surprisingly modest residue changes can enable recognition of highly divergent sequence motifs. Further examination of SDR predictions will likely reveal additional mechanisms controlling the evolutionary divergence of this important class of transcriptional regulators.

     
    more » « less