Stretchable supercapacitors (SCs) have attracted significant attention in developing power‐independent stretchable electronic systems due to their intrinsic energy storage function and unique mechanical properties. Most current SCs are generally limited by their low stretchability, complicated fabrication process, and insufficient performance and robustness. This study presents a facile method to fabricate arbitrary‐shaped stretchable electrodes via 4D printing of conductive composite from reduced graphene oxide, carbon nanotube, and poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate. The electrode patterns of an arbitrary shape can be deposited onto prestretched substrates by aerosol‐jet printing, then self‐organized origami (ridge) patterns are generated after releasing the substrates from holding stretchers due to the mismatched strains. The stretchable electrodes demonstrate superior mechanical robustness and stretchability without sacrificing its outstanding electrochemical performance. The symmetric SC prototype possesses a gravimetric capacitance of ≈21.7 F g−1at a current density of 0.5 A g−1and a capacitance retention of ≈85.8% from 0.5 to 5 A g−1. A SC array with arbitrary‐shaped electrodes is also fabricated and connected in series to power light‐emitting diode patterns for large‐scale applications. The proposed method paves avenues for scalable manufacturing of future energy‐storage devices with controlled extensibility and high electrochemical performance.
Formation of thick, high energy density, flexible solid supercapacitors is challenging because of difficulties infilling gel electrolytes into porous electrodes. Incomplete infilling results in a low capacitance and poor mechanical properties. Here we report a bottom-up infilling method to overcome these challenges. Electrodes up to 500 μm thick, formed from multi-walled carbon nanotubes and a composite of poly(3,4-ethylenedioxythiophene), polystyrene sulfonate and multi-walled carbon nanotubes are successfully infilled with a polyvinyl alcohol/phosphoric acid gel electrolyte. The exceptional mechanical properties of the multi-walled carbon nanotube-based electrode enable it to be rolled into a radius of curvature as small as 0.5 mm without cracking and retain 95% of its initial capacitance after 5000 bending cycles. The areal capacitance of our 500 μm thick poly(3,4-ethylenedioxythiophene), polystyrene sulfonate, multi-walled carbon nanotube-based flexible solid supercapacitor is 2662 mF cm–2at 2 mV s–1, at least five times greater than current flexible supercapacitors.
more » « less- PAR ID:
- 10154313
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Transparent microelectrodes that facilitate simultaneous optical and electrophysiological interfacing are desirable tools for neuroscience. Electrodes made from transparent conductors such as graphene and indium tin oxide (ITO) show promise but are often limited by poor charge‐transfer properties. Herein, microelectrodes are demonstrated that take advantage of the transparency and volumetric capacitance of poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Ring‐shaped microelectrodes are fabricated by inkjet‐printing PEDOT:PSS, encapsulating with Parylene C, and then exposing a contact site that is much smaller than the microelectrode outer diameter. This unique structure allows the encapsulated portion of the microelectrode volume surrounding the contact site to participate in signal transduction, which reduces impedance and enhances charge storage capacity. While using the same 100 μm diameter contact site, increasing the outer diameter of the encapsulated electrode from 300 to 550 μm reduces the impedance from 294 ± 21 to 98 ± 2 kΩ, respectively, at 1 Hz. Similarly, the charge storage capacity is enhanced from 6 to 21 mC cm−2. The PEDOT:PSS microelectrodes provide a low‐haze, high‐transmittance optical interface, demonstrating their suitability for optical neuroscience applications. They remain functional after a million 1 V stimulation cycles, up to 600 μA of stimulation current, and more than 1000 mechanical bending cycles.
-
Abstract The demand of cost‐effective fabrication of printed flexible transistors has dramatically increased in recent years due to the need for flexible interface devices for various application including e‐skins, wearables, and medical patches. In this study, electrohydrodynamic (EHD) printing processes are developed to fabricate all the components of polymer‐based organic thin film transistors (OTFTs), including source/drain and gate electrodes, semiconductor channel, and gate dielectrics, which streamline the fabrication procedure for flexible OTFTs. The flexible transistors with top‐gate‐bottom‐contact configuration are fabricated by integrating organic semiconductor (i.e., poly(3‐hexylthiophene‐2,5‐diyl) blended with small molecule 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene), conductive polymer (i.e., poly (3,4‐ethylenedioxythiophene) polystyrene sulfonate), and ion‐gel dielectric. These functional inks are carefully designed with orthogonal solvents to enable their compatible printing into multilayered flexible OTFTs. The EHD printing process of each functional component is experimentally characterized and optimized. The fully EHD‐printed OTFTs show good electrical performance with mobility of 2.86 × 10−1cm2V−1s−1and on/off ratio of 104, and great mechanical flexibility with small mobility change at bending radius of 6 mm and stable transistor response under hundreds of bending cycles. The demonstrated all printing‐based fabrication process provides a cost‐effective route toward flexible electronics with OTFTs.
-
Flexible electronics with highly thermal stability and mechanical strength are highly needed in advanced transportation systems. Semiconducting single‐walled carbon nanotubes are one of the leading active materials for such thin film transistors because they are printable, flexible, thermally stable, and mechanically strong. Dielectrics with large capacitance are another major component, and polymer electrolytes are printed for flexible electronics, but they suffer from poor mechanical strength and low operating temperature. Here, a transparent, mechanically flexible, and thermally stable polyfluorinated electrolyte (PFE) is developed with high capacitance by curing printed polyfluorinated resin (PFR) and ionic liquid composite at high temperature. PFE inherits the mechanical flexibility and thermal stability from PFR. The immobilized ionic liquid inside the porous structures of PFE accounts for the high capacitance. With top‐gated PFE, fully printed electronically pure single‐chirality (6,5) single‐walled carbon nanotube (SWCNT) thin‐film transistors (TFTs) exhibit air stable, consistent, and reliable ambipolar characteristics with high transconductance (1 mS) and small subthreshold swing (<0.15 V dec−1) at low voltage in ambient air for p‐type and n‐type carriers, and >105ON/OFF current ratio for both carriers under low operation voltage.
-
Abstract Stretchable supercapacitors have received increasing attention due to their broad applications in developing self‐powered stretchable electronics for wearable electronics, epidermal and implantable electronics, and biomedical devices that are capable of sustaining large deformations and conforming to complicated surfaces. In this work, a new type of highly stretchable and reliable supercapacitor is developed based on crumpled vertically aligned carbon nanotube (CNT) forests transferred onto an elastomer substrate with the assistance of a thermal annealing process in atmosphere environment. The crumpled CNT‐forest electrodes demonstrated good electrochemical performance and stability under either uniaxial (300%) or biaxial strains (300% × 300%) for thousands of stretching–relaxing cycles. The resulting supercapacitors can sustain a stretchability of 800% and possess a specific capacitance of 5 mF cm−2at the scan rate of 50 mV s−1. Furthermore, the crumpled CNT‐forest electrodes can be easily decorated with impregnated metal oxide nanoparticles to improve the specific capacitance and energy density of the supercapacitors. The approach developed in this work offers an alternative strategy for developing novel stretchable energy devices with vertically aligned nanotubes or nanowires for advanced applications in stretchable, flexible, and wearable electronic systems.