skip to main content


Title: Electrical conductivity and magnetic dynamos in magma oceans of Super-Earths
Abstract

Super-Earths are extremely common among the numerous exoplanets that have been discovered. The high pressures and temperatures in their interiors are likely to lead to long-lived magma oceans. If their electrical conductivity is sufficiently high, the mantles of Super-Earth would generate their own magnetic fields. With ab initio simulations, we show that upon melting, the behavior of typical mantle silicates changes from semi-conducting to semi-metallic. The electrical conductivity increases and the optical properties are substantially modified. Melting could thus be detected with high-precision reflectivity measurements during the short time scales of shock experiments. We estimate the electrical conductivity of mantle silicates to be of the order of 100 Ω−1 cm−1, which implies that a magnetic dynamo process would develop in the magma oceans of Super-Earths if their convective velocities have typical values of 1 mm/s or higher. We predict exoplanets with rotation periods longer than 2 days to have multipolar magnetic fields.

 
more » « less
NSF-PAR ID:
10154329
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
9
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Super‐Earths ranging up to 10 Earth masses (ME) with Earth‐like density are common among the observed exoplanets thus far, but their measured masses and radii do not uniquely elucidate their internal structure. Exploring the phase transitions in the Mg‐silicates that define the mantle‐structure of super‐Earths is critical to characterizing their interiors, yet the relevant terapascal conditions are experimentally challenging for direct structural analysis. Here we investigated the crystal chemistry of Fe3O4as a low‐pressure analog to Mg2SiO4between 45–115 GPa and up to 3000 K using powder and single crystal X‐ray diffraction in the laser‐heated diamond anvil cell. Between 60–115 GPa and above 2000 K, Fe3O4adopts an 8‐fold coordinated Th3P4‐type structure (I‐43d,Z = 4) with disordered Fe2+and Fe3+into one metal site. This Fe‐oxide phase is isostructural with that predicted for Mg2SiO4above 500 GPa in super‐Earth mantles and suggests that Mg2SiO4can incorporate both ferric and ferrous iron at these conditions. The pressure‐volume behavior observed in this 8‐fold coordinated Fe3O4indicates a maximum 4% density increase across the 6‐ to 8‐fold coordination transition in the analog Mg‐silicate. Reassessment of the FeO—Fe3O4fugacity buffer considering the Fe3O4phase relationships identified in this study reveals that increasing pressure and temperature to 120 GPa and 3000 K in Earth and planetary mantles drives iron toward oxidation.

     
    more » « less
  2. Abstract

    Lava worlds are a potential emerging population of Super-Earths that are on close-in orbits around their host stars, with likely partially molten mantles. To date, few studies have addressed the impact of magma on the observed properties of a planet. At ambient conditions, magma is less dense than solid rock; however, it is also more compressible with increasing pressure. Therefore, it is unclear how large-scale magma oceans affect planet observables, such as bulk density. We updateExoPlex, a thermodynamically self-consistent planet interior software, to include anhydrous, hydrous (2.2 wt% H2O), and carbonated magmas (5.2 wt% CO2). We find that Earth-like planets with magma oceans larger than ∼1.5Rand ∼3.2Mare modestly denser than an equivalent-mass solid planet. From our model, three classes of mantle structures emerge for magma ocean planets: (1) a mantle magma ocean, (2) a surface magma ocean, and (3) one consisting of a surface magma ocean, a solid rock layer, and a basal magma ocean. The class of planets in which a basal magma ocean is present may sequester dissolved volatiles on billion-year timescales, in which a 4Mmass planet can trap more than 130 times the mass of water than in Earth’s present-day oceans and 1000 times the carbon in the Earth’s surface and crust.

     
    more » « less
  3. Abstract

    An internally generated magnetic field once existed on the Moon. This field reached high intensities (∼10–100μT, perhaps intermittently) from ∼4.3 to 3.6 Gyr ago and then weakened to ≲5μT before dissipating by ∼1.9–0.8 Gyr ago. While the Moon’s metallic core could have generated a magnetic field via a dynamo powered by vigorous convection, models of a core dynamo often fail to explain the observed characteristics of the lunar magnetic field. In particular, the core alone may not contain sufficient thermal, chemical, or radiogenic energy to sustain the high-intensity fields for >100 Myr. A recent study by Scheinberg et al. suggested that a dynamo hosted in electrically conductive, molten silicates in a basal magma ocean (BMO) may have produced a strong early field. However, that study did not fully explore the BMO’s coupled evolution with the core. Here we show that a coupled BMO–core dynamo driven primarily by inner core growth can explain the timing and staged decline of the lunar magnetic field. We compute the thermochemical evolution of the lunar core with a 1D parameterized model tied to extant simulations of mantle evolution and BMO solidification. Our models are most sensitive to four parameters: the abundances of sulfur and potassium in the core, the core’s thermal conductivity, and the present-day heat flow across the core–mantle boundary. Our models best match the Moon’s magnetic history if the bulk core contains ∼6.5–8.5 wt% sulfur, in agreement with seismic structure models.

     
    more » « less
  4. Abstract

    Sub-Neptune exoplanets may have thick hydrogen envelopes and therefore develop a high-pressure interface between hydrogen and the underlying silicates/metals. Some sub-Neptunes may convert to super-Earths via massive gas loss. If hydrogen chemically reacts with oxides and metals at high pressures and temperatures (PT), it could impact the structure and composition of the cores and atmospheres of sub-Neptunes and super-Earths. While H2gas is a strong reducing agent at low pressures, the behavior of hydrogen is unknown at thePTexpected for sub-Neptunes’ interiors, where hydrogen is a dense supercritical fluid. Here we report experimental results of reactions between ferrous/ferric oxides and hydrogen at 20–40 GPa and 1000–4000 K utilizing the pulsed laser-heated diamond-anvil cell combined with synchrotron X-ray diffraction. Under these conditions, hydrogen spontaneously strips iron off the oxides, forming Fe-H alloys and releasing oxygen to the hydrogen medium. In a planetary context where this reaction may occur, the Fe-H alloy may sink to the metallic part of the core, while released oxygen may stabilize as water in the silicate layer, providing a mechanism to ingas hydrogen to the deep interiors of sub-Neptunes. Water produced from the redox reaction can also partition to the atmosphere of sub-Neptunes, which has important implications for understanding the composition of their atmospheres. In addition, super-Earths converted from sub-Neptunes may contain a large amount of hydrogen and water in their interiors (at least a few wt% H2O). This is distinct from smaller rocky planets, which were formed relatively dry (likely a few hundredths wt% H2O).

     
    more » « less
  5. The Earth’s mantle transition zone (MTZ) is often considered an internal reservoir for water because its major minerals wadsleyite and ringwoodite can store several oceans of structural water. Whether it is a hydrous layer or an empty reservoir is still under debate. Previous studies suggested the MTZ may be saturated with iron metal. Here we show that metallic iron reacts with hydrous wadsleyite under the pressure and temperature conditions of the MTZ to form iron hydride or molecular hydrogen and silicate with less than tens of parts per million (ppm) water, implying that water enrichment is incompatible with iron saturation in the MTZ. With the current estimate of water flux to the MTZ, the iron metal preserved from early Earth could transform a significant fraction of subducted water into reduced hydrogen species, thus limiting the hydration of silicates in the bulk MTZ. Meanwhile, the MTZ would become gradually oxidized and metal depleted. As a result, water-rich region can still exist near modern active slabs where iron metal was consumed by reaction with subducted water. Heterogeneous water distribution resolves the apparent contradiction between the extreme water enrichment indicated by the occurrence of hydrous ringwoodite and ice VII in superdeep diamonds and the relatively low water content in bulk MTZ silicates inferred from electrical conductivity studies. 
    more » « less