skip to main content

Title: Carrier density and disorder tuned superconductor-metal transition in a two-dimensional electron system

Quantum ground states that arise at atomically controlled oxide interfaces provide an opportunity to address key questions in condensed matter physics, including the nature of two-dimensional metallic behaviour often observed adjacent to superconductivity. At the superconducting LaAlO3/SrTiO3interface, a metallic ground state emerges upon the collapse of superconductivity with field-effect gating and is accompanied with a pseudogap. Here we utilize independent control of carrier density and disorder of the interfacial superconductor using dual electrostatic gates, which enables the comprehensive examination of the electronic phase diagram approaching zero temperature. We find that the pseudogap corresponds to precursor pairing, and the onset of long-range phase coherence forms a two-dimensional superconducting dome as a function of the dual-gate voltages. The gate-tuned superconductor–metal transitions are driven by macroscopic phase fluctuations of Josephson coupled superconducting puddles.

; ; ; ; ; ; ; ; ; ;
Publication Date:
Journal Name:
Nature Communications
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Experiments investigating magnetic-field-tuned superconductor–insulator transition (HSIT) mostly focus on two-dimensional material systems where the transition and its proximate ground-state phases, often exhibit features that are seemingly at odds with the expected behavior. Here we present a complementary study of a three-dimensional pressure-packed amorphous indium-oxide (InOx) powder where granularity controls the HSIT. Above a low threshold pressure of ∼0.2 GPa, vestiges of superconductivity are detected, although neither a true superconducting transition nor insulating behavior are observed. Instead, a saturation at very high resistivity at low pressure is followed by saturation at very low resistivity at higher pressure. We identify both as different manifestations of anomalous metallic phases dominated by superconducting fluctuations. By analogy with previous identification of the low resistance saturation as a ‘failed superconductor’, our data suggests that the very high resistance saturation is a manifestation of a ‘failed insulator’. Above a threshold pressure of ∼6 GPa, the sample becomes fully packed, and superconductivity is robust, withTCtunable with pressure. A quantum critical point atPC∼ 25 GPa marks the complete suppression of superconductivity. For a finite pressure belowPC, a magnetic field is shown to induce a HSIT from a true zero-resistance superconducting state to a weakly insulating behavior. Determining the critical field,HC, wemore »show that similar to the 2D behavior, the insulating-like state maintains a superconducting character, which is quenched at higher field, above which the magnetoresistance decreases to its fermionic normal state value.

    « less
  2. Abstract

    Many experiments investigating magnetic-field tuned superconductor-insulator transition (H-SIT) often exhibit low-temperature resistance saturation, which is interpreted as an anomalous metallic phase emerging from a ‘failed superconductor’, thus challenging conventional theory. Here we study a random granular array of indium islands grown on a gateable layer of indium-oxide. By tuning the intergrain couplings, we reveal a wide range of magnetic fields where resistance saturation is observed, under conditions of careful electromagnetic filtering and within a wide range of linear response. Exposure to external broadband noise or microwave radiation is shown to strengthen the tendency of superconductivity, where at low field a global superconducting phase is restored. Increasing magnetic field unveils an ‘avoided H-SIT’ that exhibits granularity-induced logarithmic divergence of the resistance/conductance above/below that transition, pointing to possible vestiges of the original emergent duality observed in a true H-SIT. We conclude that anomalous metallic phase is intimately associated with inherent inhomogeneities, exhibiting robust behavior at attainable temperatures for strongly granular two-dimensional systems.

  3. Abstract

    The interplay between charge transfer and electronic disorder in transition-metal dichalcogenide multilayers gives rise to superconductive coupling driven by proximity enhancement, tunneling and superconducting fluctuations, of a yet unwieldy variety. Artificial spacer layers introduced with atomic precision change the density of states by charge transfer. Here, we tune the superconductive coupling betweenNbSe2monolayers from proximity-enhanced to tunneling-dominated. We correlate normal and superconducting properties inSnSe1+δmNbSe21tailored multilayers with varying SnSe layer thickness (m=115). From high-field magnetotransport the critical fields yield Ginzburg–Landau coherence lengths with an increase of140%cross-plane (m=19), trending towards two-dimensional superconductivity form>9. We show cross-overs between three regimes: metallic with proximity-enhanced coupling (m=14), disordered-metallic with intermediate coupling (m=59) and insulating with Josephson tunneling (m>9). Our results demonstrate that stacking metal mono- and dichalcogenides allows to convert a metal/superconductor into an insulator/superconductor system, prospecting the control of two-dimensional superconductivity in embedded layers.

  4. Abstract

    Interest in topological states of matter burgeoned over a decade ago with the theoretical prediction and experimental detection of topological insulators, especially in bulk three-dimensional insulators that can be tuned out of it by doping. Their superconducting counterpart, the fully-gapped three-dimensional time-reversal-invariant topological superconductors, have evaded discovery in bulkintrinsic superconductorsso far. The recently discovered topological metalβ-PdBi2is a unique candidate for tunable bulk topological superconductivity because of its intrinsic superconductivity and spin-orbit-coupling. In this work, we provide experimental transport signatures consistent with fully-gapped 3D time-reversal-invariant topological superconductivity in K-dopedβ-PdBi2. In particular, we find signatures of odd-parity bulk superconductivity via upper-critical field and magnetization measurements— odd-parity pairing can be argued, given the band structure ofβ-PdBi2, to result in 3D topological superconductivity. In addition, Andreev spectroscopy reveals surface states protected by time-reversal symmetry which might be possible evidence of Majorana surface states (Majorana cone). Moreover, we find that the undoped bulk system is a trivial superconductor. Thus, we discoverβ-PdBi2as a unique bulk material that, on doping, can potentially undergo an unprecedented topological quantum phase transition in the superconducting state.

  5. Abstract

    The recently discovered kagome superconductorsAV3Sb5(A= K, Rb, Cs) exhibit unusual charge-density-wave (CDW) orders with time-reversal and rotational symmetry breaking. One of the most crucial unresolved issues is identifying the symmetry of the superconductivity that develops inside the CDW phase. Theory predicts a variety of unconventional superconducting symmetries with sign-changing and chiral order parameters. Experimentally, however, superconducting phase information inAV3Sb5is still lacking. Here we report the impurity effects in CsV3Sb5using electron irradiation as a phase-sensitive probe of superconductivity. Our magnetic penetration depth measurements reveal that with increasing impurities, an anisotropic fully-gapped state changes to an isotropic full-gap state without passing through a nodal state. Furthermore, transport measurements under pressure show that the double superconducting dome in the pressure-temperature phase diagram survives against sufficient impurities. These results support that CsV3Sb5is a non-chiral, anisotropics-wave superconductor with no sign change both at ambient and under pressure.