skip to main content


Title: Fully integrated wearable impedance cytometry platform on flexible circuit board with online smartphone readout
Abstract

We present a wearable microfluidic impedance cytometer implemented on a flexible circuit wristband with on-line smartphone readout for portable biomarker counting and analysis. The platform contains a standard polydimethylsiloxane (PDMS) microfluidic channel integrated on a wristband, and the circuitry on the wristband is composed  of a custom analog lock-in amplification system, a microcontroller with an 8-bit analog-to-digital converter (ADC), and a Bluetooth module wirelessly paired with a smartphone. The lock-in amplification (LIA) system is implemented with a novel architecture which consists of the lock-in amplifier followed by a high-pass filter stage with DC offset subtraction, and a post-subtraction high gain stage enabling detection of particles as small as 2.8  μm using the 8-bit ADC. The Android smartphone application was used to initiate the system and for offline data-plotting and peak counting, and supports online data readout, analysis, and file management. The data is exportable to researchers and medical professionals for in-depth analysis and remote health monitoring. The system, including the microfluidic sensor, microcontroller, and Bluetooth module all fit on the wristband with a footprint of less than 80 cm2. We demonstrate the ability of the system to obtain generalized blood cell counts; however the system can be applied to a wide variety of biomarkers by interchanging the standard microfluidic channel with microfluidic channels designed for biomarker isolation.

 
more » « less
PAR ID:
10154339
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Microsystems & Nanoengineering
Volume:
4
Issue:
1
ISSN:
2055-7434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SALT, a new dedicated readout Application Specific Integrated Circuit (ASIC) for the Upstream Tracker, a new silicon detector in the Large Hadron Collider beauty (LHCb) experiment, has been designed and developed. It is a 128-channel chip using an innovative architecture comprising a low-power analogue front-end with fast pulse shaping and a 40 MSps 6-bit Analog-to-Digital Converter (ADC) in each channel, followed by a Digital Signal Processing (DSP) block performing pedestal and Mean Common Mode (MCM) subtraction and zero suppression. The prototypes of SALT were fabricated and tested, confirming the full chip functionality and fulfilling the specifications. A signal-to-noise ratio of about 20 is achieved for a silicon sensor with a 12 pF input capacitance. In this paper, the SALT architecture and measurements of the chip performance are presented. 
    more » « less
  2. Field deployment is critical to developing numerous sensitive impedance transducers. Precise, cost-effective, and real-time readout units are being sought to interface these sensitive impedance transducers for various clinical or environmental applications. This paper presents a general readout method with a detailed design procedure for interfacing impedance transducers that generate small fractional changes in the impedance characteristics after detection. The emphasis of the design is obtaining a target response resolution considering the accuracy in real-time. An entire readout unit with amplification/filtering and real-time data acquisition and processing using a single microcontroller is proposed. Most important design parameters, such as the signal-to-noise ratio (SNR), common-mode-to-differential conversion, digitization configuration/speed, and the data processing method are discussed here. The studied process can be used as a general guideline to design custom readout units to interface with various developed transducers in the laboratory and verify the performance for field deployment and commercialization. A single frequency readout unit with a target 8-bit resolution to interface differentially placed transducers (e.g., bridge configuration) is designed and implemented. A single MCU is programmed for real-time data acquisition and sine fitting. The 8-bit resolution is achieved even at low SNR levels of roughly 7 dB by setting the component values and fitting algorithm parameters with the given methods. 
    more » « less
  3. We describe a many-channel experiment control system based on a field-programmable gate array (FPGA). The system has 16 bit resolution on 10 analog 100 megasamples-per-second (MS/s) input channels, 14 analog 100 MS/s output channels, 16 slow analog input and output channels, dozens of digital inputs and outputs, and a touchscreen display for experiment control and monitoring. The system can support ten servo loops with 155 ns latency and MHz bandwidths, in addition to as many as 30 lower bandwidth servos. We demonstrate infinite-impulse-response (IIR) proportional–integral–differential filters with 30 ns latency by using only bit-shifts and additions. These IIR filters allow timing margin at 100 MS/s and use fewer FPGA resources than straightforward multiplier-based filters, facilitating many servos on a single FPGA. We present several specific applications: Hänsch–Couillaud laser locks with automatic lock acquisition and a slow dither correction of lock offsets, variable duty cycle temperature servos, and the generation of multiple synchronized arbitrary waveforms. 
    more » « less
  4. In this paper, a monotonic power side-channel attack (PSA) is proposed to analyze the security vulnerabilities of flash analog-to-digital converters (ADC), where the digital output of a flash ADC is determined by characterizing the monotonic relationship between the traces of the power consumed and the applied input signals. A novel technique that leverages clock phase division is proposed to secure the power side channel information of a 4-bit flash ADC. The proposed technique adds randomness to decorrelate the input signal from the given power trace as the execution phase of each comparator depends on a thermometer code computed from the previous seven clock cycles. The monotonic PSA is executed on both a secured and unsecured ADC, with results indicating 1.9 bits of information leakage from an unprotected ADC and no data leakage from a protected ADC as the bit-wise accuracy is approximately 50% when secured. The monotonic PSA is more effective at attacking a flash ADC architecture than either a convolutional neural network based PSA or a correlation template PSA. The secured ADC core occupies approximately 2% more area than a non-secure ADC in a 65 nm process, and provides a sampling frequency of up to 500 MHz at a supply voltage of 1.2 V. Index Terms—power side-channel, ADC, 
    more » « less
  5. We consider channel estimation for an uplink massive multiple input multiple output (MIMO) system where the base station (BS) uses a first-order spatial Sigma-Delta (Σ△) analog-to-digital converter (ADC) array. The Σ△ array consists of closely spaced sensors which oversample the received signal and provide a coarsely quantized (1-bit) output. We develop a linear minimum mean squared error (LMMSE) estimator based on the Bussgang decomposition that reformulates the nonlinear quantizer model using an equivalent linear model plus quantization noise. The performance of the proposed Σ△ LMMSE estimator is compared via simulation to channel estimation using standard 1-bit quantization and also infinite resolution ADCs. 
    more » « less