skip to main content

Title: Anomalous Hall magnetoresistance in a ferromagnet
Abstract

The anomalous Hall effect, observed in conducting ferromagnets with broken time-reversal symmetry, offers the possibility to couple spin and orbital degrees of freedom of electrons in ferromagnets. In addition to charge, the anomalous Hall effect also leads to spin accumulation at the surfaces perpendicular to both the current and magnetization direction. Here, we experimentally demonstrate that the spin accumulation, subsequent spin backflow, and spin–charge conversion can give rise to a different type of spin current-related spin current related magnetoresistance, dubbed here as the anomalous Hall magnetoresistance, which has the same angular dependence as the recently discovered spin Hall magnetoresistance. The anomalous Hall magnetoresistance is observed in four types of samples: co-sputtered (Fe1−xMnx)0.6Pt0.4, Fe1−xMnx/Pt multilayer, Fe1−xMnxwithx = 0.17–0.65 and Fe, and analyzed using the drift-diffusion model. Our results provide an alternative route to study charge–spin conversion in ferromagnets and to exploit it for potential spintronic applications.

Authors:
; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10154345
Journal Name:
Nature Communications
Volume:
9
Issue:
1
ISSN:
2041-1723
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The emergence of ferromagnetism in materials where the bulk phase does not show any magnetic order demonstrates that atomically precise films can stabilize distinct ground states and expands the phase space for the discovery of materials. Here, the emergence of long-range magnetic order is reported in ultrathin (111) LaNiO3(LNO) films, where bulk LNO is paramagnetic, and the origins of this phase are explained. Transport and structural studies of LNO(111) films indicate that NiO6octahedral distortions stabilize a magnetic insulating phase at the film/substrate interface and result in a thickness-dependent metal–insulator transition att = 8 unit cells. Away from this interface, distortions relax and bulk-like conduction is regained. Synchrotron x-ray diffraction and dynamical x-ray diffraction simulations confirm a corresponding out-of-plane unit-cell expansion at the interface of all films. X-ray absorption spectroscopy reveals that distortion stabilizes an increased concentration of Ni2+ions. Evidence of long-range magnetic order is found in anomalous Hall effect and magnetoresistance measurements, likely due to ferromagnetic superexchange interactions among Ni2+–Ni3+ions. Together, these results indicate that long-range magnetic ordering and metallicity in LNO(111) films emerges from a balance among the spin, charge, lattice, and orbital degrees of freedom.

  2. Abstract

    Spin-orbit torques (SOT) enable efficient electrical control of the magnetic state of ferromagnets, ferrimagnets and antiferromagnets. However, the conventional SOT has severe limitation that only in-plane spins accumulate near the surface, whether interpreted as a spin Hall effect (SHE) or as an Edelstein effect. Such a SOT is not suitable for controlling perpendicular magnetization, which would be more beneficial for realizing low-power-consumption memory devices. Here we report the observation of a giant magnetic-field-like SOT in a topological antiferromagnet Mn3Sn, whose direction and size can be tuned by changing the order parameter direction of the antiferromagnet. To understand the magnetic SHE (MSHE)- and the conventional SHE-induced SOTs on an equal footing, we formulate them as interface spin-electric-field responses and analyzed using a macroscopic symmetry analysis and a complementary microscopic quantum kinetic theory. In this framework, the large out-of-plane spin accumulation due to the MSHE has an inter-band origin and is likely to be caused by the large momentum-dependent spin splitting in Mn3Sn. Our work demonstrates the unique potential of antiferromagnetic Weyl semimetals in overcoming the limitations of conventional SOTs and in realizing low-power spintronics devices with new functionalities.

  3. Abstract

    Van der Waals heterostructures offer great versatility to tailor unique interactions at the atomically flat interfaces between dissimilar layered materials and induce novel physical phenomena. By bringing monolayer 1 T’ WTe2, a two-dimensional quantum spin Hall insulator, and few-layer Cr2Ge2Te6, an insulating ferromagnet, into close proximity in an heterostructure, we introduce a ferromagnetic order in the former via the interfacial exchange interaction. The ferromagnetism in WTe2manifests in the anomalous Nernst effect, anomalous Hall effect as well as anisotropic magnetoresistance effect. Using local electrodes, we identify separate transport contributions from the metallic edge and insulating bulk. When driven by an AC current, the second harmonic voltage responses closely resemble the anomalous Nernst responses to AC temperature gradient generated by nonlocal heater, which appear as nonreciprocal signals with respect to the induced magnetization orientation. Our results from different electrodes reveal spin-polarized edge states in the magnetized quantum spin Hall insulator.

  4. Abstract

    Employing the probabilistic nature of unstable nano-magnet switching has recently emerged as a path towards unconventional computational systems such as neuromorphic or Bayesian networks. In this letter, we demonstrate proof-of-concept stochastic binary operation using hard axis initialization of nano-magnets and control of their output state probability (activation function) by means of input currents. Our method provides a natural path towards addition of weighted inputs from various sources, mimicking the integration function of neurons. In our experiment, spin orbit torque (SOT) is employed to “drive” nano-magnets with perpendicular magnetic anisotropy (PMA) -to their metastable state, i.e. in-plane hard axis. Next, the probability of relaxing into one magnetization state (+mi) or the other (−mi) is controlled using an Oersted field generated by an electrically isolated current loop, which acts as a “charge” input to the device. The final state of the magnet is read out by the anomalous Hall effect (AHE), demonstrating that the magnetization can be probabilistically manipulated and output through charge currents, closing the loop from charge-to-spin and spin-to-charge conversion. Based on these building blocks, a two-node directed network is successfully demonstrated where the status of the second node is determined by the probabilistic output of the previous nodemore »and a weighted connection between them. We have also studied the effects of various magnetic properties, such as magnet size and anisotropic field on the stochastic operation of individual devices through Monte Carlo simulations of Landau Lifshitz Gilbert (LLG) equation. The three-terminal stochastic devices demonstrated here are a critical step towards building energy efficient spin based neural networks and show the potential for a new application space.

    « less
  5. Abstract

    Magnetic impurities at surfaces of superconductors can induce bound states referred to as Yu–Shiba–Rusinov states (i.e. Shiba states) within superconducting (SC) gaps. For superconductors with strong spin–orbit coupling (SOC), Shiba states arising from even single magnetic adatoms are too complex to be fully understood using effective models alone because SOC cannot be treated perturbatively and multiple orbitals are strongly mixed with spin projections. Here we investigate Shiba states of single magnetic adatoms at the surface of strongly spin-orbit coupled SC Pb, by solving the fully relativistic Dirac–Bogoliubov–de Gennes equations using multiple scattering Green’s function methods. For Fe and Co adatoms on Pb(110), we show that the Shiba states are better characterized by total angular momentum,J, and its projections on thezaxis,mJ. As a hallmark of the SOC effect, the Shiba states show a strong dependence of the orientation of the adatom moment. As the orientation of the Fe/Co moment changes, the deepest Shiba states merge at zero energy. This zero-energy state disappears with an additional non-magnetic adatom next to the magnetic adatom, although the other Shiba states unchange. For a Mn adatom on Pb, our Shiba states overall agree with experiments. The characteristics of our Shiba states are also observedmore »with the similar energies and characters in the experiments. The deepest Shiba states that we compute, however, do not appear as close to the Fermi level as the experimental data. It would be interesting to compute the Shiba states with continuously varying vertical distances of the Mn adatom from the surface or with varying the charge state of the adatom, and to calculate the spatial dependence of the spectral density. Our findings will be also useful for understanding of Shiba states for dimers and longer spin chains on the Pb surface considering noncollinear magnetic structures in them.

    « less