Advancements in tissue engineering and biomaterial development have the potential to provide a scalable solution to the problem of large‐volume skeletal muscle defects. Previous research on the development of scaffolds for skeletal muscle regeneration has focused on strategies for increasing conductivity, which has improved satellite cell attachment and differentiation. However, these strategies usually increase scaffold stiffness, which some studies suggest may be detrimental to myoblast development. In this study, the polymers polypyrrole (PPy) and polycaprolactone (PCL) were synthesized together into a copolymer (PPy–PCL) designed to increase scaffold conductivity without significantly influencing stiffness. Different scaffold groups were fabricated via electrospinning, characterized, and assessed for their suitability for myoblast proliferation and differentiation. The groups included an aligned and random iteration of pure PCL, 10% PPy–PCL, 20% PPy–PCL, and 40% PPy–PCL. Only the 40% PPy–PCL group had a measureable conductivity, and the addition of PPy–PCL had no significant effect on the stiffness of the scaffolds. The PPy–PCL copolymer significantly increased the attachment of C2C12 myoblasts as compared to pure PCL scaffolds, but the concentration of PPy–PCL did not significantly alter cell attachment. In addition, scaffolds with PPy–PCL promoted myoblast differentiation to a greater extent than scaffolds made of PCL as measured by fusion index and number of nuclei per myotube. Aligned scaffolds were superior to random scaffolds in almost all measures. These results suggest that conductivity may not be the key factor in improving skeletal muscle scaffolds. Instead, cell attachment and aligned guidance cues may have a greater impact on myoblast differentiation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 220–231, 2019.
Graphene, owing to its inherent chemical inertness, biocompatibility, and mechanical flexibility, has great potential in guiding cell behaviors such as adhesion and differentiation. However, due to the two-dimensional (2D) nature of graphene, the microfabrication of graphene into micro/nanoscale patterns has been widely adopted for guiding cellular assembly. In this study, we report crumpled graphene, i.e., monolithically defined graphene with a nanoscale wavy surface texture, as a tissue engineering platform that can efficiently promote aligned C2C12 mouse myoblast cell differentiation. We imparted out-of-plane, nanoscale crumpled morphologies to flat graphene via compressive strain-induced deformation. When C2C12 mouse myoblast cells were seeded on the uniaxially crumpled graphene, not only were the alignment and elongation promoted at a single-cell level but also the differentiation and maturation of myotubes were enhanced compared to that on flat graphene. These results demonstrate the utility of the crumpled graphene platform for tissue engineering and regenerative medicine for skeletal muscle tissues.
more » « less- NSF-PAR ID:
- 10154346
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Microsystems & Nanoengineering
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2055-7434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Hydrogels have been used for many applications in tissue engineering and regenerative medicine due to their versatile material properties and similarities to the native extracellular matrix. Poly (ethylene glycol) diacrylate (PEGDA) is an ionic electroactive polymer (EAP), a material that responds to an electric field with a change in size or shape while in an ionic solution, that may be used in the development of hydrogels. In this study, we have investigated a positively charged EAP that can bend without the need of external ions. PEGDA was modified with the positively charged molecule 2‐(methacryloyloxy)ethyl‐trimethylammonium chloride (MAETAC) to provide its own positive ions. This hydrogel was then characterized and optimized for bending and cellular biocompatibility with C2C12 mouse myoblast cells. Studies show that the polymer responds to an electric field and supports C2C12 viability.
-
Abstract Cultivated meat production requires bioprocess optimization to achieve cell densities that are multiple orders of magnitude higher compared to conventional cell culture techniques. These processes must maximize resource efficiency and cost-effectiveness by attaining high cell growth productivity per unit of medium. Microcarriers, or carriers, are compatible with large-scale bioreactor use, and offer a large surface-area-to-volume ratio for the adhesion and proliferation of anchorage-dependent animal cells. An ongoing challenge persists in the efficient retrieval of cells from the carriers, with conflicting reports on the effectiveness of trypsinization and the need for additional optimization measures such as carrier sieving. To surmount this issue, edible carriers have been proposed, offering the advantage of integration into the final food product while providing opportunities for texture, flavor, and nutritional incorporation. Recently, a proof of concept (POC) utilizing inactivated mycelium biomass derived from edible filamentous fungus demonstrated its potential as a support structure for myoblasts. However, this POC relied on a model mammalian cell line combination with a single mycelium species, limiting realistic applicability to cultivated meat production. This study aims to advance the POC. We found that the species of fungi composing the carriers impacts C2C12 myoblast cell attachment—with carriers derived from
Aspergillus oryzae promoting the best proliferation. C2C12 myoblasts effectively differentiated on mycelium carriers when induced in myogenic differentiation media. Mycelium carriers also supported proliferation and differentiation of bovine satellite cells. These findings demonstrate the potential of edible mycelium carrier technology to be readily adapted in product development within the cultivated meat industry. -
Cell migration is centrally involved in a myriad of physiological processes, including morphogenesis, wound healing, tissue repair, and metastatic growth. The bioenergetics that underlie migratory behavior are not fully understood, in part because of variations in cell culture media and utilization of experimental cell culture systems that do not model physiological connective extracellular fibrous networks. In this study, we evaluated the bioenergetics of C2C12 myoblast migration and force production on fibronectin-coated nanofiber scaffolds of controlled diameter and alignment, fabricated using a nonelectrospinning spinneret-based tunable engineered parameters (STEP) platform. The contribution of various metabolic pathways to cellular migration was determined using inhibitors of cellular respiration, ATP synthesis, glycolysis, or glucose uptake. Despite immediate effects on oxygen consumption, mitochondrial inhibition only modestly reduced cell migration velocity, whereas inhibitors of glycolysis and cellular glucose uptake led to striking decreases in migration. The migratory metabolic sensitivity was modifiable based on the substrates present in cell culture media. Cells cultured in galactose (instead of glucose) showed substantial migratory sensitivity to mitochondrial inhibition. We used nanonet force microscopy to determine the bioenergetic factors responsible for single-cell force production and observed that neither mitochondrial nor glycolytic inhibition altered single-cell force production. These data suggest that myoblast migration is heavily reliant on glycolysis in cells grown in conventional media. These studies have wide-ranging implications for the causes, consequences, and putative therapeutic treatments aimed at cellular migration.more » « less
-
Abstract Universal platforms for biomolecular analysis using label‐free sensing modalities can address important diagnostic challenges. Electrical field effect‐sensors are an important class of devices that can enable point‐of‐care sensing by probing the charge in the biological entities. Use of crumpled graphene for this application is especially promising. It is previously reported that the limit of detection (LoD) on electrical field effect‐based sensors using DNA molecules on the crumpled graphene FET (field‐effect transistor) platform. Here, the crumpled graphene FET‐based biosensing of important biomarkers including small molecules and proteins is reported. The performance of devices is systematically evaluated and optimized by studying the effect of the crumpling ratio on electrical double layer (EDL) formation and bandgap opening on the graphene. It is also shown that a small and electroneutral molecule dopamine can be captured by an aptamer and its conformation change induced electrical signal changes. Three kinds of proteins were captured with specific antibodies including interleukin‐6 (IL‐6) and two viral proteins. All tested biomarkers are detectable with the highest sensitivity reported on the electrical platform. Significantly, two COVID‐19 related proteins, nucleocapsid (N‐) and spike (S‐) proteins antigens are successfully detected with extremely low LoDs. This electrical antigen tests can contribute to the challenge of rapid, point‐of‐care diagnostics.