skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microplastic in riverine fish is connected to species traits
Abstract Microplastic is a contaminant of concern worldwide. Rivers are implicated as major pathways of microplastic transport to marine and lake ecosystems, and microplastic ingestion by freshwater biota is a risk associated with microplastic contamination, but there is little research on microplastic ecology within freshwater ecosystems. Microplastic uptake by fish is likely affected by environmental microplastic abundance and aspects of fish ecology, but these relationships have rarely been addressed. We measured the abundance and composition of microplastic in fish and surface waters from 3 major tributaries of Lake Michigan, USA. Microplastic was detected in fish and surface waters from all 3 sites, but there was no correlation between microplastic concentrations in fish and surface waters. Rather, there was a significant effect of functional feeding group on microplastic concentration in fish.Neogobius melanostomus(round goby, a zoobenthivore) had the highest concentration of gut microplastic (19 particles fish−1) compared to 10 other fish taxa measured, and had a positive linear relationship between body size and number of microplastic particles. Surface water microplastic concentrations were lowest in the most northern, forested watershed, and highest in the most southern, agriculturally dominated watershed. Results suggest microplastic pollution is common in river food webs and is connected to species feeding characteristics. Future research should focus on understanding the movement of microplastic from point-source and diffuse sources and into aquatic ecosystems, which will support pollution management efforts on inland waters.  more » « less
Award ID(s):
1552825
PAR ID:
10154355
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
8
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Microplastics (particles <5 mm) are commonly found in aquatic organisms across taxonomic groups and ecosystems. However, the egestion rate of microplastics from aquatic organisms and how egestion rates compare to other rates of microplastic movement in the environment are sparsely documented. We fed microplastic fibres to round gobies ( Neogobius melanostomus ), an abundant, invasive species in the Laurentian Great Lakes. We conducted two trials where round gobies were fed microplastic‐containing food either a single time (1 day) or every day over 7 days. There was no difference in microplastic egestion rates from the 1 day or 7 day feeding trials, suggesting no impact of duration of exposure on egestion (exponential decay rate = −0.055 [±0.016 SE ] and −0.040 [±0.007 SE ], respectively). Turnover time of microplastics (i.e., average time from ingestion to egestion) in the gut ranged from 18.2 to 25.0 hr, similar to published values for other freshwater taxa. We also measured microplastics in the digestive tracts of round gobies collected directly from Lake Michigan, U.S.A. Using published values for round goby density and microplastic concentration at the study sites, we calculated areal egestion rate by round gobies (no. particles m –2  day –1 ), and compared it to riverine microplastic export (no. particles m –2  day –1 ). Both area‐based rates were of the same order of magnitude, suggesting that round goby egestion could be an important, and potentially overlooked component of microplastic dynamics at the ecosystem scale. Animal egestion is well‐known as a major component of nutrient and carbon cycling. However, direct measurements of microplastic fluxes in the environment that include animal egestion rates are uncommon. An ecosystem ecology approach is needed to meet the emerging challenge of generating microplastic budgets for freshwater environments and elsewhere, thereby informing management and mitigation of plastic pollution at a global scale. 
    more » « less
  2. Abstract Plastic litter is accumulating in ecosystems worldwide. Rivers are a major source of plastic litter to oceans. However, rivers also retain and transform plastic pollution. While methods for calculating particle transport dynamics in rivers are well established, they are infrequently used to quantify the transport and retention of microplastics (i.e., particles < 5 mm) in flowing waters. Measurements of microplastic movement in rivers are needed for a greater understanding of the fate of plastic litter at watershed and global scales, and to inform pollution prevention strategies. Our objectives were to (1) quantify the abundance of microplastics within different river habitats and (2) adapt organic matter “spiraling” metrics to measure microplastic transport concurrent with fine particulate organic matter (FPOM). We quantified microplastic and FPOM abundance across urban river habitats (i.e., surface water, water column, benthos), and calculated downstream particle velocity, index of retention, turnover rate, and spiraling length for both particle types. Microplastic standing stock was assessed using a habitat‐specific approach, and estimates were scaled up to encompass the study reach. Spatial distribution of particles demonstrated that microplastics and FPOM were retained together, likely by hydrodynamic forces that facilitate particle sinking or resuspension. Microplastic particles had a higher downstream particle velocity and lower index of retention relative to FPOM, suggesting that microplastics were retained to a lesser degree than FPOM in the study reaches. Microplastics also showed lower turnover rates and longer spiraling lengths relative to FPOM, attributed to the slow rates of plastic degradation. Thus, rivers are less retentive of microplastics than FPOM, although both particles are retained in similar locations. Because microplastics are resistant to degradation, individual particles can be transported longer distances prior to mineralization than FPOM, making it likely that microplastic particles will encounter larger bodies of water and interact with various aquatic biota in the process. These empirical assessments of particle transport will be valuable for understanding the fate and transformation of microplastic particles in freshwater resources and ultimately contribute to the refinement of global plastic budgets. 
    more » « less
  3. Abstract Plastic is pervasive in modern economies and ecosystems. Freshwater fish ingest microplastics (i.e., particles <5 mm), but no studies have examined historical patterns of their microplastic consumption. Measuring the patterns of microplastic pollution in the past is critical for predicting future trends and for understanding the relationship between plastics in fish and the environment. We measured microplastics in digestive tissues of specimens collected from the years 1900–2017 and preserved in museum collections. We collected new fish specimens in 2018, along with water and sediment samples. We selected four species:Micropterus salmoides(largemouth bass),Notropis stramineus(sand shiner),Ictalurus punctatus(channel catfish), andNeogobius melanostomus(round goby) because each was well represented in museum collections, are locally abundant, and collected from urban habitats. For each individual, we dissected the digestive tissue from esophagus to anus, subjected tissue to peroxide oxidation, examined particles under a dissecting microscope, and used Raman spectroscopy to characterize the particles' chemical composition. No microplastics were detected in any fish prior to 1950. From mid‐century to 2018, microplastic concentrations showed a significant increase when data from all fish were considered together. All detected particles were fibers, and represented plastic polymers (e.g., polyester) along with mixtures of natural and synthetic textiles. For the specimens collected in 2018, microplastics in fish and sediment showed similar patterns across study sites, while water column microplastics showed no differences among locations. Overall, plastic pollution in common freshwater fish species is increasing and pervasive across individuals and species, and is likely related to changes in environmental concentrations. Museum specimens are an overlooked source for assessing historical patterns of microplastic pollution, and for predicting future trends in freshwater fish, thereby helping to sustain the health of commercial and recreational fisheries worldwide. 
    more » « less
  4. Abstract Most freshwater habitats have been substantially affected by anthropogenic factors such as fish introductions, plastic pollution, and river regulation. Urban rivers are highly vulnerable to impacts associated with land use changes resulting from increasing urbanization, including altering habitat and establishing aquatic biological communities in these areas. In turn, the introduction of exotic species into sensitive and threatened ecosystems such as tropical urban streams and their rapid establishment, such asPterygoplichthys multiradiatus, was used as an ecological model to determine the relative population size of the species. Also, the species was used to evaluate the presence of microplastics (MPs) in the gastrointestinal tract (GIT) of fish in rivers with different land use history. Our results showed significant differences in pleco abundance between areas with high and low urban (LU) development in the watersheds. The study demonstrated that abiotic environmental factors directly influence the relative abundance of plecos at the range and watershed scales. In a total of 42 fish examined, only 85.7% showed MPs retained in the GIT, with fibers and fragments being the most common. A total of 22 pieces of microplastic were identified with Nile Red staining by slide analysis. A significant difference was found between the abundance of microplastic ingested per total fish length between streams with high and LU development reaches. Therefore, in relatively small amounts, microplastic ingestion appears to be common inP. multiradiatusspecies, regardless of the habitat in which they are found and the diet present. 
    more » « less
  5. Abstract Alongside global climate change, many freshwater ecosystems are experiencing substantial shifts in the concentrations and compositions of salt ions coming from both land and sea. We synthesize a risk framework for anticipating how climate change and increasing salt pollution coming from both land and saltwater intrusion will trigger chain reactions extending from headwaters to tidal waters. Salt ions trigger ‘chain reactions,’ where chemical products from one biogeochemical reaction influence subsequent reactions and ecosystem responses. Different chain reactions impact drinking water quality, ecosystems, infrastructure, and energy and food production. Risk factors for chain reactions include shifts in salinity sources due to global climate change and amplification of salinity pulses due to the interaction of precipitation variability and human activities. Depending on climate and other factors, salt retention can range from 2 to 90% across watersheds globally. Salt retained in ecosystems interacts with many global biogeochemical cycles along flowpaths and contributes to ‘fast’ and ‘slow’ chain reactions associated with temporary acidification and long-term alkalinization of freshwaters, impacts on nutrient cycling, CO2, CH4, N2O, and greenhouse gases, corrosion, fouling, and scaling of infrastructure, deoxygenation, and contaminant mobilization along the freshwater-marine continuum. Salt also impacts the carbon cycle and the quantity and quality of organic matter transported from headwaters to coasts. We identify the double impact of salt pollution from land and saltwater intrusion on a wide range of ecosystem services. Our salinization risk framework is based on analyses of: (1) increasing temporal trends in salinization of tributaries and tidal freshwaters of the Chesapeake Bay and freshening of the Chesapeake Bay mainstem over 40 years due to changes in streamflow, sea level rise, and watershed salt pollution; (2) increasing long-term trends in concentrations and loads of major ions in rivers along the Eastern U.S. and increased riverine exports of major ions to coastal waters sometimes over 100-fold greater than forest reference conditions; (3) varying salt ion concentration-discharge relationships at U.S. Geological Survey (USGS) sites across the U.S.; (4) empirical relationships between specific conductance and Na+, Cl, SO42−, Ca2+, Mg2+, K+, and N at USGS sites across the U.S.; (5) changes in relationships between concentrations of dissolved organic carbon (DOC) and different salt ions at USGS sites across the U.S.; and (6) original salinization experiments demonstrating changes in organic matter composition, mobilization of nutrients and metals, acidification and alkalinization, changes in oxidation–reduction potentials, and deoxygenation in non-tidal and tidal waters. The interaction of human activities and climate change is altering sources, transport, storage, and reactivity of salt ions and chain reactions along the entire freshwater-marine continuum. Our salinization risk framework helps anticipate, prevent, and manage the growing double impact of salt ions from both land and sea on drinking water, human health, ecosystems, aquatic life, infrastructure, agriculture, and energy production. 
    more » « less