skip to main content


Title: Microplastic in riverine fish is connected to species traits
Abstract

Microplastic is a contaminant of concern worldwide. Rivers are implicated as major pathways of microplastic transport to marine and lake ecosystems, and microplastic ingestion by freshwater biota is a risk associated with microplastic contamination, but there is little research on microplastic ecology within freshwater ecosystems. Microplastic uptake by fish is likely affected by environmental microplastic abundance and aspects of fish ecology, but these relationships have rarely been addressed. We measured the abundance and composition of microplastic in fish and surface waters from 3 major tributaries of Lake Michigan, USA. Microplastic was detected in fish and surface waters from all 3 sites, but there was no correlation between microplastic concentrations in fish and surface waters. Rather, there was a significant effect of functional feeding group on microplastic concentration in fish.Neogobius melanostomus(round goby, a zoobenthivore) had the highest concentration of gut microplastic (19 particles fish−1) compared to 10 other fish taxa measured, and had a positive linear relationship between body size and number of microplastic particles. Surface water microplastic concentrations were lowest in the most northern, forested watershed, and highest in the most southern, agriculturally dominated watershed. Results suggest microplastic pollution is common in river food webs and is connected to species feeding characteristics. Future research should focus on understanding the movement of microplastic from point-source and diffuse sources and into aquatic ecosystems, which will support pollution management efforts on inland waters.

 
more » « less
Award ID(s):
1552825
NSF-PAR ID:
10154355
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
8
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Microplastics (particles <5 mm) are commonly found in aquatic organisms across taxonomic groups and ecosystems. However, the egestion rate of microplastics from aquatic organisms and how egestion rates compare to other rates of microplastic movement in the environment are sparsely documented. We fed microplastic fibres to round gobies ( Neogobius melanostomus ), an abundant, invasive species in the Laurentian Great Lakes. We conducted two trials where round gobies were fed microplastic‐containing food either a single time (1 day) or every day over 7 days. There was no difference in microplastic egestion rates from the 1 day or 7 day feeding trials, suggesting no impact of duration of exposure on egestion (exponential decay rate = −0.055 [±0.016 SE ] and −0.040 [±0.007 SE ], respectively). Turnover time of microplastics (i.e., average time from ingestion to egestion) in the gut ranged from 18.2 to 25.0 hr, similar to published values for other freshwater taxa. We also measured microplastics in the digestive tracts of round gobies collected directly from Lake Michigan, U.S.A. Using published values for round goby density and microplastic concentration at the study sites, we calculated areal egestion rate by round gobies (no. particles m –2  day –1 ), and compared it to riverine microplastic export (no. particles m –2  day –1 ). Both area‐based rates were of the same order of magnitude, suggesting that round goby egestion could be an important, and potentially overlooked component of microplastic dynamics at the ecosystem scale. Animal egestion is well‐known as a major component of nutrient and carbon cycling. However, direct measurements of microplastic fluxes in the environment that include animal egestion rates are uncommon. An ecosystem ecology approach is needed to meet the emerging challenge of generating microplastic budgets for freshwater environments and elsewhere, thereby informing management and mitigation of plastic pollution at a global scale. 
    more » « less
  2. Abstract

    Plastic litter is accumulating in ecosystems worldwide. Rivers are a major source of plastic litter to oceans. However, rivers also retain and transform plastic pollution. While methods for calculating particle transport dynamics in rivers are well established, they are infrequently used to quantify the transport and retention of microplastics (i.e., particles < 5 mm) in flowing waters. Measurements of microplastic movement in rivers are needed for a greater understanding of the fate of plastic litter at watershed and global scales, and to inform pollution prevention strategies. Our objectives were to (1) quantify the abundance of microplastics within different river habitats and (2) adapt organic matter “spiraling” metrics to measure microplastic transport concurrent with fine particulate organic matter (FPOM). We quantified microplastic and FPOM abundance across urban river habitats (i.e., surface water, water column, benthos), and calculated downstream particle velocity, index of retention, turnover rate, and spiraling length for both particle types. Microplastic standing stock was assessed using a habitat‐specific approach, and estimates were scaled up to encompass the study reach. Spatial distribution of particles demonstrated that microplastics and FPOM were retained together, likely by hydrodynamic forces that facilitate particle sinking or resuspension. Microplastic particles had a higher downstream particle velocity and lower index of retention relative to FPOM, suggesting that microplastics were retained to a lesser degree than FPOM in the study reaches. Microplastics also showed lower turnover rates and longer spiraling lengths relative to FPOM, attributed to the slow rates of plastic degradation. Thus, rivers are less retentive of microplastics than FPOM, although both particles are retained in similar locations. Because microplastics are resistant to degradation, individual particles can be transported longer distances prior to mineralization than FPOM, making it likely that microplastic particles will encounter larger bodies of water and interact with various aquatic biota in the process. These empirical assessments of particle transport will be valuable for understanding the fate and transformation of microplastic particles in freshwater resources and ultimately contribute to the refinement of global plastic budgets.

     
    more » « less
  3. Abstract

    Plastic is pervasive in modern economies and ecosystems. Freshwater fish ingest microplastics (i.e., particles <5 mm), but no studies have examined historical patterns of their microplastic consumption. Measuring the patterns of microplastic pollution in the past is critical for predicting future trends and for understanding the relationship between plastics in fish and the environment. We measured microplastics in digestive tissues of specimens collected from the years 1900–2017 and preserved in museum collections. We collected new fish specimens in 2018, along with water and sediment samples. We selected four species:Micropterus salmoides(largemouth bass),Notropis stramineus(sand shiner),Ictalurus punctatus(channel catfish), andNeogobius melanostomus(round goby) because each was well represented in museum collections, are locally abundant, and collected from urban habitats. For each individual, we dissected the digestive tissue from esophagus to anus, subjected tissue to peroxide oxidation, examined particles under a dissecting microscope, and used Raman spectroscopy to characterize the particles' chemical composition. No microplastics were detected in any fish prior to 1950. From mid‐century to 2018, microplastic concentrations showed a significant increase when data from all fish were considered together. All detected particles were fibers, and represented plastic polymers (e.g., polyester) along with mixtures of natural and synthetic textiles. For the specimens collected in 2018, microplastics in fish and sediment showed similar patterns across study sites, while water column microplastics showed no differences among locations. Overall, plastic pollution in common freshwater fish species is increasing and pervasive across individuals and species, and is likely related to changes in environmental concentrations. Museum specimens are an overlooked source for assessing historical patterns of microplastic pollution, and for predicting future trends in freshwater fish, thereby helping to sustain the health of commercial and recreational fisheries worldwide.

     
    more » « less
  4. Abstract

    Plastic pollution has pervaded almost every facet of the biosphere, yet we lack an understanding of consumption risk by marine species at the global scale. To address this, we compile data from research documenting plastic debris ingestion by marine fish, totaling 171,774 individuals of 555 species. Overall, 386 marine fish species have ingested plastic debris including 210 species of commercial importance. However, 148 species studied had no records of plastic consumption, suggesting that while this evolutionary trap is widespread, it is not yet universal. Across all studies that accounted for microplastics, the incidence rate of plastic ingested by fish was 26%. Over the last decade this incidence has doubled, increasing by 2.4 ± 0.4% per year. This is driven both by increasing detection of smaller sized particles as a result of improved methodologies, as well as an increase in fish consuming plastic. Further, we investigated the role of geographic, ecological, and behavioral factors in the ingestion of plastic across species. These analyses revealed that the abundance of plastic in surface waters was positively correlated to plastic ingestion. Demersal species are more likely to ingest plastic in shallow waters; in contrast, pelagic species were most likely to consume plastic below the mixed layer. Mobile predatory species had the highest likelihood to ingest plastic; similarly, we found a positive relationship between trophic level and plastic ingestion. We also find evidence that surface ingestion‐deep sea egestion of microplastics by mesopelagic myctophids is likely a key mechanism for the export of microplastics from the surface ocean to the seafloor, a sink for marine debris. These results elucidate the role of ecology and biogeography underlying plastic ingestion by marine fish and point toward species and regions in urgent need of study.

     
    more » « less
  5. <italic>Abstract</italic>

    Human impacts on freshwater ecosystems are pervasive, but the short and discontinuous nature of most datasets limits our ability to understand the controls on water quality and effectively manage freshwater resources. We examine change in Lake Mendota (Madison, Wisconsin) over the last two centuries by pairing analyses of a sedimentary archive with the site's > 100 yr limnological record. We show that eutrophication of the lake, evident as an abrupt shift in sediment composition, began in the late 19thcentury following the intensification of urban and agricultural land use in the watershed. Efforts to address deterioration of lake water quality, including the removal of point‐source pollutants and biomanipulation, have had a measurable influence on sediment composition and water clarity. Since the early 1980s, quasi‐seasonal cycles of phytoplankton blooms have induced calcite precipitation, leaving distinct laminations in the sedimentary record. These “whiting events” evidently did not accumulate in lake sediments until the late 20thcentury, indicating that efforts to remediate water quality have shifted the lake to a new ecosystem state. Calcite whitings can improve water quality in eutrophic lakes by coprecipitation with phosphate, increasing phosphorus (P) burial in lake sediments. Using long‐term limnological records, we report negative correlations between calcite saturation indices and P in lake surface waters and show that calcite whitings could partially explain recent P decline in Lake Mendota surface waters. Our study reveals a previously uncharacterized potential control on water quality in this eutrophic lake and demonstrates the benefit of coupling long‐term limnological data with sedimentary records.

     
    more » « less