Abstract Control over the copy number and nanoscale positioning of quantum dots (QDs) is critical to their application to functional nanomaterials design. However, the multiple non-specific binding sites intrinsic to the surface of QDs have prevented their fabrication into multi-QD assemblies with programmed spatial positions. To overcome this challenge, we developed a general synthetic framework to selectively attach spatially addressable QDs on 3D wireframe DNA origami scaffolds using interfacial control of the QD surface. Using optical spectroscopy and molecular dynamics simulation, we investigated the fabrication of monovalent QDs of different sizes using chimeric single-stranded DNA to control QD surface chemistry. By understanding the relationship between chimeric single-stranded DNA length and QD size, we integrated single QDs into wireframe DNA origami objects and visualized the resulting QD-DNA assemblies using electron microscopy. Using these advances, we demonstrated the ability to program arbitrary 3D spatial relationships between QDs and dyes on DNA origami objects by fabricating energy-transfer circuits and colloidal molecules. Our design and fabrication approach enables the geometric control and spatial addressing of QDs together with the integration of other materials including dyes to fabricate hybrid materials for functional nanoscale photonic devices. 
                        more » 
                        « less   
                    
                            
                            Enhanced mRNA FISH with compact quantum dots
                        
                    
    
            Abstract Fluorescence in situ hybridization (FISH) is the primary technology used to image and count mRNA in single cells, but applications of the technique are limited by photophysical shortcomings of organic dyes. Inorganic quantum dots (QDs) can overcome these problems but years of development have not yielded viable QD-FISH probes. Here we report that macromolecular size thresholds limit mRNA labeling in cells, and that a new generation of compact QDs produces accurate mRNA counts. Compared with dyes, compact QD probes provide exceptional photostability and more robust transcript quantification due to enhanced brightness. New spectrally engineered QDs also allow quantification of multiple distinct mRNA transcripts at the single-molecule level in individual cells. We expect that QD-FISH will particularly benefit high-resolution gene expression studies in three dimensional biological specimens for which quantification and multiplexing are major challenges. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1745812
- PAR ID:
- 10154371
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Carbon quantum dots (C‐QDs) show potential to replace traditional semiconductive quantum dots as the next generation of fluorescent probes. We demonstrate here a new C‐QD production process using lignin, a high‐volume but low market‐value industrial waste and/or environmental hazards, as the starting carbon source. By adding a small amount of inorganic acid, the rich phenolic components in lignin were successfully converted to C‐QDs through a coking formation mechanism similar to what happens on solid acid catalysts in traditional fossil fuel cracking process. Their aqueous solution presence of the received lignin C‐QDs is beneficial for brain cell imaging applications, attributing to their fast internalization, low toxicity, tunable photoluminescence by appropriate acidity and reaction temperature during hydrothermal synthesis. This method not only provides a low‐cost C‐QDs production route, but also helps gain extra profit and/or improve environment for many small agricultural business and paper and pulp industry located in rural area.more » « less
- 
            Abstract Hybrid graphene and quantum dots (QDs) photodetectors merge the excellent conductivity and ambipolar electric field sensitivity of graphene, with the unique properties of QDs. The photoresponsivity of these devices depends strongly on the charge transfer at the graphene/QDs interface. Here 1‐pyrene butyric acid (PBA)‐coated PbS QDs with single layer graphene (SLG) are used to investigate the effect of pyrene as a π–π mediator to enhance charge transfer at the SLG/QDs junction under illumination. The surface chemistry at the QD–QD and SLG/QD interface is studied with the conventional tetrabutylammonium iodide (TBAI) QD linker. The hybrid SLG/QD photodetectors with PBA as a SLG‐QD linker demonstrate a photoresponse up to 30% higher than that recorded for devices where only TBAI is used, due to the strong electron coupling between SLG and QDs. Transconductance measurements show that PBA provokes electron depletion in SLG ascribed to the tendency to delocalize the QDs holes, favoring their transfer to SLG. This surface ligand is found to improve the interaction between the QDs light absorbers and the SLG charge collector, leading to an increased photodetection response. This demonstrates that ligand engineering can enhance charge dynamics and boost the performance of the hybrid device.more » « less
- 
            Abstract The photoluminescence (PL) saturation of CdSe/ZnS core/shell inorganic semiconductor quantum dots (QDs) and its utility as a probe for saturated excitation (SAX) microscopy are reported. Under saturating excitation power densities, the PL signal was demodulated and recorded at harmonics of the fundamental frequency. For commercially available Qdot® 655 ITK™ QDs, the power density required to achieve saturation was dependent upon the local environment of the QDs. For QDs deposited and dried on a glass substrate, the excitation power density required for PL saturation was less than 1 kW/cm2. Compared to this, saturation of PL for QDs dispersed in water required an excitation power density greater than 200 kW/cm2. This observation is manifested as a limitation in the imaging of hydrated samples, as demonstrated for HeLa cells labelled with biotinylated‐phalloidin followed by labelling with streptavidin‐coated QDs. As saturation affects the obtained spatial resolution in several imaging formats, including confocal imaging, the provided data will aid in obtaining the optimal spatial resolution when using QD probes to image biological samples.more » « less
- 
            Abstract Carbon‐based quantum dots (QDs) enable flexible manipulation of electronic behavior at the nanoscale, but controlling their magnetic properties requires atomically precise structural control. While magnetism is observed in organic molecules and graphene nanoribbons (GNRs), GNR precursors enabling bottom‐up fabrication of QDs with various spin ground states have not yet been reported. Here the development of a new GNR precursor that results in magnetic QD structures embedded in semiconducting GNRs is reported. Inserting one such molecule into the GNR backbone and graphitizing it results in a QD region hosting one unpaired electron. QDs composed of two precursor molecules exhibit nonmagnetic, antiferromagnetic, or antiferromagnetic ground states, depending on the structural details that determine the coupling behavior of the spins originating from each molecule. The synthesis of these QDs and the emergence of localized states are demonstrated through high‐resolution atomic force microscopy (HR‐AFM), scanning tunneling microscopy (STM) imaging, and spectroscopy, and the relationship between QD atomic structure and magnetic properties is uncovered. GNR QDs provide a useful platform for controlling the spin‐degree of freedom in carbon‐based nanostructures.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
