skip to main content


Title: Non-equilibrium anisotropic colloidal single crystal growth with DNA
Abstract

Anisotropic colloidal crystals are materials with novel optical and electronic properties. However, experimental observations of colloidal single crystals have been limited to relatively isotropic habits. Here, we show DNA-mediated crystallization of two types of nanoparticles with different hydrodynamic radii that form highly anisotropic, hexagonal prism microcrystals with AB2crystallographic symmetry. The DNA directs the nanoparticles to assemble into a non-equilibrium crystal shape that is enclosed by the highest surface energy facets (AB2(10$$\overline 1$$1¯0) and AB2(0001)). Simulations and theoretical arguments show that this observation is a consequence of large energy barriers between different terminations of the AB2(10$$\overline 1$$1¯0) facet, which results in a significant deceleration of the (10$$\overline 1$$1¯0) facet growth rate. In addition to reporting a hexagonal colloidal crystal habit, this work introduces a potentially general plane multiplicity mechanism for growing non-equilibrium crystal shapes, an advance that will be useful for designing colloidal crystal habits with important applications in both optics and photocatalysis.

 
more » « less
NSF-PAR ID:
10154373
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
9
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Twinning, on par with dislocations, is critically required in plastic deformation of hexagonal close-packed crystals at low temperatures. In contrast to that in cubic-structured crystals, twinning in hexagonal close-packed crystals requires atomic shuffles in addition to shear. Though the twinning shear that is carried by twinning dislocations has been captured for decades, direct experimental observation of the atomic shuffles, especially when the shuffling mode is not unique and does not confine to the plane of shear, remains a formidable challenge to date. Here, by using in-situ transmission electron microscopy, we directly capture the atomic mechanism of the$$\left\{11\bar{2}1\right\}$$112¯1twinning in hexagonal close packed rhenium nanocrystals. Results show that the$$\left\{11\bar{2}1\right\}$$112¯1twinning is dominated by the (b1/2, h1/2) twinning disconnections. In contrast to conventional expectations, the atomic shuffles accompanying the twinning disconnections proceed on alternative basal planes along 1/6$$\left\langle 1\bar{1}00\right\rangle$$11¯00, which may be attributed to the free surface in nanocrystal samples, leading to a lack of mirror symmetry across the$$\left\{11\bar{2}1\right\}$$112¯1twin boundary.

     
    more » « less
  2. Abstract

    Two-dimensional (2D) Dirac states with linear dispersion have been observed in graphene and on the surface of topological insulators. 2D Dirac states discovered so far are exclusively pinned at high-symmetry points of the Brillouin zone, for example, surface Dirac states at$$\overline{{{\Gamma }}}$$Γ¯in topological insulators Bi2Se(Te)3and Dirac cones atKand$$K^{\prime}$$Kpoints in graphene. The low-energy dispersion of those Dirac states are isotropic due to the constraints of crystal symmetries. In this work, we report the observation of novel 2D Dirac states in antimony atomic layers with phosphorene structure. The Dirac states in the antimony films are located at generic momentum points. This unpinned nature enables versatile ways such as lattice strains to control the locations of the Dirac points in momentum space. In addition, dispersions around the unpinned Dirac points are highly anisotropic due to the reduced symmetry of generic momentum points. The exotic properties of unpinned Dirac states make antimony atomic layers a new type of 2D Dirac semimetals that are distinct from graphene.

     
    more » « less
  3. Abstract

    Understanding biomineralization relies on imaging chemically heterogeneous organic–inorganic interfaces across a hierarchy of spatial scales. Further, organic minority phases are often responsible for emergent inorganic structures from the atomic arrangement of different polymorphs, to nano- and micrometer crystal dimensions, up to meter size mollusk shells. The desired simultaneous chemical and elemental imaging to identify sparse organic moieties across a large field-of-view with nanometer spatial resolution has not yet been achieved. Here, we combine nanoscale secondary ion mass spectroscopy (NanoSIMS) with spectroscopic IRs-SNOM imaging for simultaneous chemical, molecular, and elemental nanoimaging. At the example ofPinctada margaritiferamollusk shells we identify and resolve ~ 50 nm interlamellar protein sheets periodically arranged in regular ~ 600 nm intervals. The striations typically appear ~ 15 µm from the nacre-prism boundary at the interface between disordered neonacre to mature nacre. Using the polymorph distinctive IR-vibrational carbonate resonance, the nacre and prismatic regions are consistently identified as aragonite ($${\overline{\nu }}_{a}=860$$ν¯a=860cm−1) and calcite ($${\overline{\nu }}_{c}=880$$ν¯c=880cm−1), respectively. We observe previously unreported morphological features including aragonite subdomains encapsulated in extensions of the prism-covering organic membrane and regions of irregular nacre tablet formation coincident with dispersed organics. We also identify a ~ 200 nm region in the incipient nacre region with less well-defined crystal structure and integrated organics. These results show with the identification of the interlamellar protein layer how correlative nano-IR chemical and NanoSIMS elemental imaging can help distinguish different models proposed for shell growth in particular, and how organic function may relate to inorganic structure in other biomineralized systems in general.

     
    more » « less
  4. Abstract

    We consider a conjecture that identifies two types of base point free divisors on$\overline {\text {M}}_{0,n}$M¯0,n. The first arises from Gromov-Witten theory of a Grassmannian. The second comes from first Chern classes of vector bundles associated with simple Lie algebras in type A. Here we reduce this conjecture on$\overline {\text {M}}_{0,n}$M¯0,nto the same statement forn= 4. A reinterpretation leads to a proof of the conjecture on$\overline {\text {M}}_{0,n}$M¯0,nfor a large class, and we give sufficient conditions for the non-vanishing of these divisors.

     
    more » « less
  5. Abstract

    The crystal structure and bonding environment of K2Ca(CO3)2bütschliite were probed under isothermal compression via Raman spectroscopy to 95 GPa and single crystal and powder X-ray diffraction to 12 and 68 GPa, respectively. A second order Birch-Murnaghan equation of state fit to the X-ray data yields a bulk modulus,$${K}_{0}=46.9$$K0=46.9GPa with an imposed value of$${K}_{0}^{\prime}= 4$$K0=4for the ambient pressure phase. Compression of bütschliite is highly anisotropic, with contraction along thec-axis accounting for most of the volume change. Bütschliite undergoes a phase transition to a monoclinicC2/mstructure at around 6 GPa, mirroring polymorphism within isostructural borates. A fit to the compression data of the monoclinic phase yields$${V}_{0}=322.2$$V0=322.2 Å3$$,$$,$${K}_{0}=24.8$$K0=24.8GPa and$${K}_{0}^{\prime}=4.0$$K0=4.0using a third order fit; the ability to access different compression mechanisms gives rise to a more compressible material than the low-pressure phase. In particular, compression of theC2/mphase involves interlayer displacement and twisting of the [CO3] units, and an increase in coordination number of the K+ion. Three more phase transitions, at ~ 28, 34, and 37 GPa occur based on the Raman spectra and powder diffraction data: these give rise to new [CO3] bonding environments within the structure.

     
    more » « less