skip to main content


Title: High proportions of bacteria and archaea across most biomes remain uncultured
Abstract

A recent paper by Martiny argues that “high proportions” of bacteria in diverse Earth environments have been cultured. Here we reanalyze a portion of the data in that paper, and argue that the conclusion is based on several technical errors, most notably a calculation of sequence similarity that does not account for sequence gaps, and the reliance on 16S rRNA gene amplicons that are known to be biased towards cultured organisms. We further argue that the paper is also based on a conceptual error: namely, that sequence similarity cannot be used to infer “culturability” because one cannot infer physiology from 16S rRNA gene sequences. Combined with other recent, more reliable studies, the evidence supports the conclusion that most bacterial and archaeal taxa remain uncultured.

 
more » « less
NSF-PAR ID:
10154395
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
Volume:
13
Issue:
12
ISSN:
1751-7362
Format(s):
Medium: X Size: p. 3126-3130
Size(s):
["p. 3126-3130"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    The Spacecraft Assembly Facility (SAF) at the NASA’s Jet Propulsion Laboratory is the primary cleanroom facility used in the construction of some of the planetary protection (PP)-sensitive missions developed by NASA, including the Mars 2020 Perseverance Rover that launched in July 2020. SAF floor samples (n=98) were collected, over a 6-month period in 2016 prior to the construction of the Mars rover subsystems, to better understand the temporal and spatial distribution of bacterial populations (total, viable, cultivable, and spore) in this unique cleanroom.

    Results

    Cleanroom samples were examined for total (living and dead) and viable (living only) microbial populations using molecular approaches and cultured isolates employing the traditional NASA standard spore assay (NSA), which predominantly isolated spores. The 130 NSA isolates were represented by 16 bacterial genera, of which 97% were identified as spore-formers via Sanger sequencing. The most spatially abundant isolate wasBacillus subtilis, and the most temporally abundant spore-former wasVirgibacillus panthothenticus. The 16S rRNA gene-targeted amplicon sequencing detected 51 additional genera not found in the NSA method. The amplicon sequencing of the samples treated with propidium monoazide (PMA), which would differentiate between viable and dead organisms, revealed a total of 54 genera: 46 viable non-spore forming genera and 8 viable spore forming genera in these samples. The microbial diversity generated by the amplicon sequencing corresponded to ~86% non-spore-formers and ~14% spore-formers. The most common spatially distributed genera wereSphinigobium,Geobacillus, andBacilluswhereas temporally distributed common genera wereAcinetobacter,Geobacilllus, andBacillus. Single-cell genomics detected 6 genera in the sample analyzed, with the most prominent beingAcinetobacter.

    Conclusion

    This study clearly established that detecting spores via NSA does not provide a complete assessment for the cleanliness of spacecraft-associated environments since it failed to detect several PP-relevant genera that were only recovered via molecular methods. This highlights the importance of a methodological paradigm shift to appropriately monitor bioburden in cleanrooms for not only the aeronautical industry but also for pharmaceutical, medical industries, etc., and the need to employ molecular sequencing to complement traditional culture-based assays.

     
    more » « less
  2. Abstract

    A polyphasic taxonomic approach, incorporating analysis of phenotypic features, cellular fatty acid profiles, 16S rRNA gene sequences, and determination of average nucleotide identity (ANI) plus digital DNA–DNA hybridization (dDDH), was applied to characterize an anaerobic bacterial strain designated KD22Tisolated from human feces. 16S rRNA gene-based phylogenetic analysis showed that strain KD22Twas found to be most closely related to species of the genusGabonibacter.At the 16S rRNA gene level, the closest species from the strain KD22Tcorresponded withGabonibacter massiliensisGM7T, with a similarity of 97.58%. Cells of strain KD22T were Gram-negative coccobacillus, positive for indole and negative for catalase, nitrate reduction, oxidase, and urease activities. The fatty acid analysis demonstrated the presence of a high concentration of iso-C15: 0(51.65%). Next, the complete whole-genome sequence of strain KD22T was 3,368,578 bp long with 42 mol% of DNA G + C contents. The DDH and ANI values between KD22T and type strains of phylogenetically related species were 67.40% and 95.43%, respectively. These phylogenetic, phenotypic, and genomic results supported the affiliation of strain KD22Tas a novel bacterial species within the genusGabonibacter.The proposed name isGabonibacter chumensisand the type strain is KD22T(= CSUR Q8104T = DSM 115208 T).

     
    more » « less
  3. Abstract Background The 16S mitochondrial rRNA gene is the most widely sequenced molecular marker in amphibian systematic studies, making it comparable to the universal CO1 barcode that is more commonly used in other animal groups. However, studies employ different primer combinations that target different lengths/regions of the 16S gene ranging from complete gene sequences (~ 1500 bp) to short fragments (~ 500 bp), the latter of which is the most ubiquitously used. Sequences of different lengths are often concatenated, compared, and/or jointly analyzed to infer phylogenetic relationships, estimate genetic divergence ( p -distances), and justify the recognition of new species (species delimitation), making the 16S gene region, by far, the most influential molecular marker in amphibian systematics. Despite their ubiquitous and multifarious use, no studies have ever been conducted to evaluate the congruence and performance among the different fragment lengths. Results Using empirical data derived from both Sanger-based and genomic approaches, we show that full-length 16S sequences recover the most accurate phylogenetic relationships, highest branch support, lowest variation in genetic distances (pairwise p -distances), and best-scoring species delimitation partitions. In contrast, widely used short fragments produce inaccurate phylogenetic reconstructions, lower and more variable branch support, erratic genetic distances, and low-scoring species delimitation partitions, the numbers of which are vastly overestimated. The relatively poor performance of short 16S fragments is likely due to insufficient phylogenetic information content. Conclusions Taken together, our results demonstrate that short 16S fragments are unable to match the efficacy achieved by full-length sequences in terms of topological accuracy, heuristic branch support, genetic divergences, and species delimitation partitions, and thus, phylogenetic and taxonomic inferences that are predicated on short 16S fragments should be interpreted with caution. However, short 16S fragments can still be useful for species identification, rapid assessments, or definitively coupling complex life stages in natural history studies and faunal inventories. While the full 16S sequence performs best, it requires the use of several primer pairs that increases cost, time, and effort. As a compromise, our results demonstrate that practitioners should utilize medium-length primers in favor of the short-fragment primers because they have the potential to markedly improve phylogenetic inference and species delimitation without additional cost. 
    more » « less
  4. Abstract

    Microorganisms play essential roles in the health and resilience of cnidarians. Understanding the factors influencing cnidarian microbiomes requires cross study comparisons, yet the plethora of protocols used hampers dataset integration. We unify 16S rRNA gene sequences from cnidarian microbiome studies under a single analysis pipeline. We reprocess 12,010 cnidarian microbiome samples from 186 studies, alongside 3,388 poriferan, 370 seawater samples, and 245 cultured Symbiodiniaceae, unifying ~6.5 billion sequence reads. Samples are partitioned by hypervariable region and sequencing platform to reduce sequencing variability. This systematic review uncovers an incredible diversity of 86 archaeal and bacterial phyla associated with Cnidaria, and highlights key bacteria hosted across host sub-phylum, depth, and microhabitat. Shallow (< 30 m) water Alcyonacea and Actinaria are characterized by highly shared and relatively abundant microbial communities, unlike Scleractinia and most deeper cnidarians. Utilizing the V4 region, we find that cnidarian microbial composition, richness, diversity, and structure are primarily influenced by host phylogeny, sampling depth, and ocean body, followed by microhabitat and sampling date. We identify host and geographical generalist and specificEndozoicomonasclades within Cnidaria and Porifera. This systematic review forms a framework for understanding factors governing cnidarian microbiomes and creates a baseline for assessing stress associated dysbiosis.

     
    more » « less
  5. Abstract

    Members of the order Isochrysidales are unique among haptophyte lineages in being the exclusive producers of alkenones, long‐chain ketones that are commonly used for paleotemperature reconstructions. Alkenone‐producing haptophytes are divided into three major groups based largely on molecular ecological data: Group I is found in freshwater lakes, GroupIIcommonly occurs in brackish and coastal marine environments, and GroupIIIconsists of open ocean species. Each group has distinct alkenone distributions; however, only GroupsIIandIIIIsochrysidales currently have cultured representatives. The uncultured Group I Isochrysidales are distinguished geochemically by the presence of tri‐unsaturated alkenone isomers (C37:3bMe, C38:3bEt, C38:3bMe, C39:3bEt) present in water column and sediment samples, yet their genetic diversity, morphology, and environmental controls are largely unknown. Using small‐subunit (SSU) ribosomalRNA(rRNA) marker gene amplicon high‐throughput sequencing of environmental water column and sediment samples, we show that Group I is monophyletic with high phylogenetic diversity and contains a well‐supported clade separating the previously described “EV” clade from the “Greenland” clade. We infer the first partial large‐subunit (LSU)rRNAgene Group I sequence phylogeny, which uncovered additional well‐supported clades embedded within Group I. Relative to GroupII, Group I revealed higher levels of genetic diversity despite conservation of alkenone signatures and a closer evolutionary relationship with GroupIII. In Group I, the presence of the tri‐unsaturated alkenone isomers appears to be conserved, which is not the case for GroupII. This suggests differing environmental influences on Group I andIIand perhaps uncovers evolutionary constraints on alkenone biosynthesis.

     
    more » « less