skip to main content


Title: Emergence of Visual Center-Periphery Spatial Organization in Deep Convolutional Neural Networks
Abstract

Research at the intersection of computer vision and neuroscience has revealed hierarchical correspondence between layers of deep convolutional neural networks (DCNNs) and cascade of regions along human ventral visual cortex. Recently, studies have uncovered emergence of human interpretable concepts within DCNNs layers trained to identify visual objects and scenes. Here, we asked whether an artificial neural network (with convolutional structure) trained for visual categorization would demonstrate spatial correspondences with human brain regions showing central/peripheral biases. Using representational similarity analysis, we compared activations of convolutional layers of a DCNN trained for object and scene categorization with neural representations in human brain visual regions. Results reveal a brain-like topographical organization in the layers of the DCNN, such that activations of layer-units with central-bias were associated with brain regions with foveal tendencies (e.g. fusiform gyrus), and activations of layer-units with selectivity for image backgrounds were associated with cortical regions showing peripheral preference (e.g. parahippocampal cortex). The emergence of a categorical topographical correspondence between DCNNs and brain regions suggests these models are a good approximation of the perceptual representation generated by biological neural networks.

 
more » « less
NSF-PAR ID:
10154403
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent neuroimaging evidence challenges the classical view that face identity and facial expression are processed by segregated neural pathways, showing that information about identity and expression are encoded within common brain regions. This article tests the hypothesis that integrated representations of identity and expression arise spontaneously within deep neural networks. A subset of the CelebA dataset is used to train a deep convolutional neural network (DCNN) to label face identity (chance = 0.06%, accuracy = 26.5%), and the FER2013 dataset is used to train a DCNN to label facial expression (chance = 14.2%, accuracy = 63.5%). The identity-trained and expression-trained networks each successfully transfer to labeling both face identity and facial expression on the Karolinska Directed Emotional Faces dataset. This study demonstrates that DCNNs trained to recognize face identity and DCNNs trained to recognize facial expression spontaneously develop representations of facial expression and face identity, respectively. Furthermore, a congruence coefficient analysis reveals that features distinguishing between identities and features distinguishing between expressions become increasingly orthogonal from layer to layer, suggesting that deep neural networks disentangle representational subspaces corresponding to different sources. 
    more » « less
  2. Deep convolutional neural networks (DCNNs) trained for face identification can rival and even exceed human-level performance. The ways in which the internal face representations in DCNNs relate to human cognitive representations and brain activity are not well understood. Nearly all previous studies focused on static face image processing with rapid display times and ignored the processing of naturalistic, dynamic information. To address this gap, we developed the largest naturalistic dynamic face stimulus set in human neuroimaging research (700+ naturalistic video clips of unfamiliar faces). We used this naturalistic dataset to compare representational geometries estimated from DCNNs, behavioral responses, and brain responses. We found that DCNN representational geometries were consistent across architectures, cognitive representational geometries were consistent across raters in a behavioral arrangement task, and neural representational geometries in face areas were consistent across brains. Representational geometries in late, fully connected DCNN layers, which are optimized for individuation, were much more weakly correlated with cognitive and neural geometries than were geometries in late-intermediate layers. The late-intermediate face-DCNN layers successfully matched cognitive representational geometries, as measured with a behavioral arrangement task that primarily reflected categorical attributes, and correlated with neural representational geometries in known face-selective topographies. Our study suggests that current DCNNs successfully capture neural cognitive processes for categorical attributes of faces but less accurately capture individuation and dynamic features.

     
    more » « less
  3. According to a classical view of face perception (Bruce and Young, 1986; Haxby et al., 2000), face identity and facial expression recognition are performed by separate neural substrates (ventral and lateral temporal face-selective regions, respectively). However, recent studies challenge this view, showing that expression valence can also be decoded from ventral regions (Skerry and Saxe, 2014; Li et al., 2019), and identity from lateral regions (Anzellotti and Caramazza, 2017). These findings could be reconciled with the classical view if regions specialized for one task (either identity or expression) contain a small amount of information for the other task (that enables above-chance decoding). In this case, we would expect representations in lateral regions to be more similar to representations in deep convolutional neural networks (DCNNs) trained to recognize facial expression than to representations in DCNNs trained to recognize face identity (the converse should hold for ventral regions). We tested this hypothesis by analyzing neural responses to faces varying in identity and expression. Representational dissimilarity matrices (RDMs) computed from human intracranial recordings (n= 11 adults; 7 females) were compared with RDMs from DCNNs trained to label either identity or expression. We found that RDMs from DCNNs trained to recognize identity correlated with intracranial recordings more strongly in all regions tested—even in regions classically hypothesized to be specialized for expression. These results deviate from the classical view, suggesting that face-selective ventral and lateral regions contribute to the representation of both identity and expression.

    SIGNIFICANCE STATEMENTPrevious work proposed that separate brain regions are specialized for the recognition of face identity and facial expression. However, identity and expression recognition mechanisms might share common brain regions instead. We tested these alternatives using deep neural networks and intracranial recordings from face-selective brain regions. Deep neural networks trained to recognize identity and networks trained to recognize expression learned representations that correlate with neural recordings. Identity-trained representations correlated with intracranial recordings more strongly in all regions tested, including regions hypothesized to be expression specialized in the classical hypothesis. These findings support the view that identity and expression recognition rely on common brain regions. This discovery may require reevaluation of the roles that the ventral and lateral neural pathways play in processing socially relevant stimuli.

     
    more » « less
  4. Visual scene category representations emerge very rapidly, yet the computational transformations that enable such invariant categorizations remain elusive. Deep convolutional neural networks (CNNs) perform visual categorization at near human-level accuracy using a feedforward architecture, providing neuroscientists with the opportunity to assess one successful series of representational transformations that enable categorization in silico. The goal of the current study is to assess the extent to which sequential scene category representations built by a CNN map onto those built in the human brain as assessed by high-density, time-resolved event-related potentials (ERPs). We found correspondence both over time and across the scalp: earlier (0–200 ms) ERP activity was best explained by early CNN layers at all electrodes. Although later activity at most electrode sites corresponded to earlier CNN layers, activity in right occipito-temporal electrodes was best explained by the later, fully-connected layers of the CNN around 225 ms post-stimulus, along with similar patterns in frontal electrodes. Taken together, these results suggest that the emergence of scene category representations develop through a dynamic interplay between early activity over occipital electrodes as well as later activity over temporal and frontal electrodes. 
    more » « less
  5. Abstract

    Learning and recognition can be improved by sorting novel items into categories and subcategories. Such hierarchical categorization is easy when it can be performed according to learned rules (e.g., “if car, then automatic or stick shift” or “if boat, then motor or sail”). Here, we present results showing that human participants acquire categorization rules for new visual hierarchies rapidly, and that, as they do, corresponding hierarchical representations of the categorized stimuli emerge in patterns of neural activation in the dorsal striatum and in posterior frontal and parietal cortex. Participants learned to categorize novel visual objects into a hierarchy with superordinate and subordinate levels based on the objects' shape features, without having been told the categorization rules for doing so. On each trial, participants were asked to report the category and subcategory of the object, after which they received feedback about the correctness of their categorization responses. Participants trained over the course of a one‐hour‐long session while their brain activation was measured using functional magnetic resonance imaging. Over the course of training, significant hierarchy learning took place as participants discovered the nested categorization rules, as evidenced by the occurrence of a learning trial, after which performance suddenly increased. This learning was associated with increased representational strength of the newly acquired hierarchical rules in a corticostriatal network including the posterior frontal and parietal cortex and the dorsal striatum. We also found evidence suggesting that reinforcement learning in the dorsal striatum contributed to hierarchical rule learning.

     
    more » « less