skip to main content

Title: Emergence of Visual Center-Periphery Spatial Organization in Deep Convolutional Neural Networks

Research at the intersection of computer vision and neuroscience has revealed hierarchical correspondence between layers of deep convolutional neural networks (DCNNs) and cascade of regions along human ventral visual cortex. Recently, studies have uncovered emergence of human interpretable concepts within DCNNs layers trained to identify visual objects and scenes. Here, we asked whether an artificial neural network (with convolutional structure) trained for visual categorization would demonstrate spatial correspondences with human brain regions showing central/peripheral biases. Using representational similarity analysis, we compared activations of convolutional layers of a DCNN trained for object and scene categorization with neural representations in human brain visual regions. Results reveal a brain-like topographical organization in the layers of the DCNN, such that activations of layer-units with central-bias were associated with brain regions with foveal tendencies (e.g. fusiform gyrus), and activations of layer-units with selectivity for image backgrounds were associated with cortical regions showing peripheral preference (e.g. parahippocampal cortex). The emergence of a categorical topographical correspondence between DCNNs and brain regions suggests these models are a good approximation of the perceptual representation generated by biological neural networks.

; ; ;
Publication Date:
Journal Name:
Scientific Reports
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Visual scene category representations emerge very rapidly, yet the computational transformations that enable such invariant categorizations remain elusive. Deep convolutional neural networks (CNNs) perform visual categorization at near human-level accuracy using a feedforward architecture, providing neuroscientists with the opportunity to assess one successful series of representational transformations that enable categorization in silico. The goal of the current study is to assess the extent to which sequential scene category representations built by a CNN map onto those built in the human brain as assessed by high-density, time-resolved event-related potentials (ERPs). We found correspondence both over time and across the scalp: earlier (0–200 ms) ERP activity was best explained by early CNN layers at all electrodes. Although later activity at most electrode sites corresponded to earlier CNN layers, activity in right occipito-temporal electrodes was best explained by the later, fully-connected layers of the CNN around 225 ms post-stimulus, along with similar patterns in frontal electrodes. Taken together, these results suggest that the emergence of scene category representations develop through a dynamic interplay between early activity over occipital electrodes as well as later activity over temporal and frontal electrodes.
  2. Abstract

    Most of the research in the field of affective computing has focused on detecting and classifying human emotions through electroencephalogram (EEG) or facial expressions. Designing multimedia content to evoke certain emotions has been largely motivated by manual rating provided by users. Here we present insights from the correlation of affective features between three modalities namely, affective multimedia content, EEG, and facial expressions. Interestingly, low-level Audio-visual features such as contrast and homogeneity of the video and tone of the audio in the movie clips are most correlated with changes in facial expressions and EEG. We also detect the regions associated with the human face and the brain (in addition to the EEG frequency bands) that are most representative of affective responses. The computational modeling between the three modalities showed a high correlation between features from these regions and user-reported affective labels. Finally, the correlation between different layers of convolutional neural networks with EEG and Face images as input provides insights into human affection. Together, these findings will assist in (1) designing more effective multimedia contents to engage or influence the viewers, (2) understanding the brain/body bio-markers of affection, and (3) developing newer brain-computer interfaces as well as facial-expression-based algorithms tomore »read emotional responses of the viewers.

    « less
  3. We develop three efficient approaches for generating visual explanations from 3D convolutional neural networks (3D- CNNs) for Alzheimer’s disease classification. One approach conducts sensitivity analysis on hierarchical 3D image segmentation, and the other two visualize network activations on a spatial map. Visual checks and a quantitative localization benchmark indicate that all approaches identify important brain parts for Alzheimer’s disease diagnosis. Comparative analysis show that the sensitivity analysis based approach has difficulty handling loosely distributed cerebral cortex, and approaches based on visualization of activations are constrained by the resolution of the convo- lutional layer. The complementarity of these methods improves the understanding of 3D-CNNs in Alzheimer’s disease classification from different perspectives.
  4. Abstract People spontaneously infer other people’s psychology from faces, encompassing inferences of their affective states, cognitive states, and stable traits such as personality. These judgments are known to be often invalid, but nonetheless bias many social decisions. Their importance and ubiquity have made them popular targets for automated prediction using deep convolutional neural networks (DCNNs). Here, we investigated the applicability of this approach: how well does it generalize, and what biases does it introduce? We compared three distinct sets of features (from a face identification DCNN, an object recognition DCNN, and using facial geometry), and tested their prediction across multiple out-of-sample datasets. Across judgments and datasets, features from both pre-trained DCNNs provided better predictions than did facial geometry. However, predictions using object recognition DCNN features were not robust to superficial cues (e.g., color and hair style). Importantly, predictions using face identification DCNN features were not specific: models trained to predict one social judgment (e.g., trustworthiness) also significantly predicted other social judgments (e.g., femininity and criminal), and at an even higher accuracy in some cases than predicting the judgment of interest (e.g., trustworthiness). Models trained to predict affective states (e.g., happy) also significantly predicted judgments of stable traits (e.g., sociable), andmore »vice versa. Our analysis pipeline not only provides a flexible and efficient framework for predicting affective and social judgments from faces but also highlights the dangers of such automated predictions: correlated but unintended judgments can drive the predictions of the intended judgments.« less
  5. Convolution is a central operation in Convolutional Neural Networks (CNNs), which applies a kernel to overlapping regions shifted across the image. However, because of the strong correlations in real-world image data, convolutional kernels are in effect re-learning redundant data. In this work, we show that this redundancy has made neural network training challenging, and propose network deconvolution, a procedure which optimally removes pixel-wise and channel-wise correlations before the data is fed into each layer. Network deconvolution can be efficiently calculated at a fraction of the computational cost of a convolution layer. We also show that the deconvolution filters in the first layer of the network resemble the center-surround structure found in biological neurons in the visual regions of the brain. Filtering with such kernels results in a sparse representation, a desired property that has been missing in the training of neural networks. Learning from the sparse representation promotes faster convergence and superior results without the use of batch normalization. We apply our network deconvolution operation to 10 modern neural network models by replacing batch normalization within each. Extensive experiments show that the network deconvolution operation is able to deliver performance improvement in all cases on the CIFAR-10, CIFAR-100, MNIST, Fashion-MNIST,more »Cityscapes, and ImageNet datasets.« less