skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural Identification, Synthesis and Biological Activity of Two Volatile Cyclic Dipeptides in a Terrestrial Vertebrate
Abstract Single substances within complex vertebrate chemical signals could be physiologically or behaviourally active. However, the vast diversity in chemical structure, physical properties and molecular size of semiochemicals makes identifying pheromonally active compounds no easy task. Here, we identified two volatile cyclic dipeptides, cyclo(L-Leu-L-Pro) and cyclo(L-Pro-L-Pro), from the complex mixture of a chemical signal in terrestrial vertebrates (lizard genusSceloporus), synthesised one of them and investigated their biological activity in male intra-specific communication. In a series of behavioural trials, lizards performed more chemosensory behaviour (tongue flicks, lip smacks and substrate lickings) when presented with the synthesised cyclo(L-Pro-L-Pro) chemical blend, compared to the controls, the cyclo(L-Leu-L-Pro) blend, or a combined blend with both cyclic dipeptides. The results suggest a potential semiochemical role of cyclo(L-Pro-L-Pro) and a modulating effect of cyclo(L-Leu-L-Pro) that may depend on the relative concentration of both compounds in the chemical signal. In addition, our results stress how minor compounds in complex mixtures can produce a meaningful behavioural response, how small differences in structural design are crucial for biological activity, and highlight the need for more studies to determine the complete functional landscape of biologically relevant compounds.  more » « less
Award ID(s):
1665356
PAR ID:
10154408
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 2,5-diketopiperazines (DKPs) are cyclic dipeptides ubiquitously found in nature. In particular, cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro) are frequently detected in many microbial cultures. Each of these DKPs has four possible stereoisomers due to the presence of two chirality centers. However, absolute configurations of natural DKPs are often ambiguous due to the lack of a simple, sensitive, and reproducible method for stereochemical assignment. This is an important problem because stereochemistry is a key determinant of biological activity. Here, we report a synthetic DKP library containing all stereoisomers of cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro). The library was subjected to spectroscopic characterization using mass spectrometry, NMR, and electronic circular dichroism (ECD). It turned out that ECD can clearly differentiate DKP stereoisomers. Thus, our ECD dataset can serve as a reference for unambiguous stereochemical assignment of cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro) samples from natural sources. The DKP library was also subjected to a biological screening using assays for E. coli growth and biofilm formation, which revealed distinct biological effects of cyclo(D-Phe-L-Pro). 
    more » « less
  2. Abstract Diketopiperazines (DKPs) are chemically and functionally diverse cyclic dipeptides associated primarily with microbes. Few DKPs have been reported from plants and animals; the best characterized is cyclo(His-Pro), found in the mammalian central nervous system, where it arises from the proteolytic cleavage of a thyrotropin-releasing tripeptide hormone. Herein, we report the identification of cyclo(His-Pro) in Arabidopsis (Arabidopsis thaliana), where its levels increase upon abiotic stress conditions, including high salt, heat, and cold. To screen for potential protein targets, we used isothermal shift assays, which examine changes in protein-melting stability upon ligand binding. Among the identified proteins, we focused on the glycolytic enzyme, cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC1). Binding between the GAPC1 protein and cyclo(His-Pro) was validated using nano-differential scanning fluorimetry and microscale thermophoresis, and we could further demonstrate that cyclo(His-Pro) inhibits GAPC1 activity with an IC50 of ∼200 μm. This inhibition was conserved in human GAPDH. Inhibition of glyceraldehyde-3-phosphate dehydrogenase activity has previously been reported to reroute carbon from glycolysis toward the pentose phosphate pathway. Accordingly, cyclo(His-Pro) supplementation augmented NADPH levels, increasing the NADPH/NADP+ ratio. Phenotypic screening revealed that plants supplemented with cyclo(His-Pro) were more tolerant to high-salt stress, as manifested by higher biomass, which we show is dependent on GAPC1/2. Our work reports the identification and functional characterization of cyclo(His-Pro) as a modulator of glyceraldehyde-3-phosphate dehydrogenase in plants. 
    more » « less
  3. Abstract As COVID‐19 infection caused severe public health concerns recently, the development of novel antivirals has become the need of the hour. Main protease (Mpro) has been an attractive target for antiviral drugs since it plays a vital role in polyprotein processing and virus maturation. Herein we report the discovery of a novel class of inhibitors against the SARS‐CoV‐2, bearing histidineα‐nitrile motif embedded on a simple dipeptide framework.In‐vitroandin‐silicostudies revealed that the histidineα‐nitrile motif envisioned to target the Mprocontributes to the inhibitory activity. Among a series of dipeptides synthesized featuring this novel structural motif, some dipeptides displayed strong viral reduction (EC50=0.48 μM) with a high selectivity index, SI>454.54. These compounds also exhibit strong binding energies in the range of −28.7 to −34.2 Kcal/mol. The simple dipeptide structural framework, amenable to quick structural variations, coupled with ease of synthesis from readily available commercial starting materials are the major attractive features of this novel class of SARS‐CoV‐2 inhibitors. The histidineα‐nitrile dipeptides raise the hope of discovering potent drug candidates based on this motif to fight the dreaded SARS‐CoV‐2. 
    more » « less
  4. Abstract Relative to other cyclic poly‐phosphorus species (that is,cyclo‐Pn), the planarcyclo‐P4group is unique in its requirement of two additional electrons to achieve aromaticity. These electrons are supplied from one or more metal centers. However, the degree of charge transfer is dependent on the nature of the metal fragment. Unique examples of dianionic mononuclear η4‐P4complexes are presented that can be viewed as the simple coordination of the [cyclo‐P4]2−dianion to a neutral metal fragment. Treatment of the neutral, molybdenumcyclo‐P4complexes Mo(η4‐P4)I2(CO)(CNArDipp2)2and Mo(η4‐P4)(CO)2(CNArDipp2)2with KC8produces the dianionic, three‐legged piano stool complexes, [Mo(η4‐P4)(CO)(CNArDipp2)2]2−and [Mo(η4‐P4)(CO)2(CNArDipp2)]2−, respectively. Structural, spectroscopic, and computational studies reveal a similarity to the classic η6‐benzene complex (η6‐C6H6)Mo(CO)3regarding the metal‐center valence state and electronic population of the planar‐cyclic ligand π system. 
    more » « less
  5. Atmospheric aerosols exist as complex mixtures containing three or more compounds. Ternary aerosol mixtures composed of organic/organic/inorganic can undergo liquid–liquid phase separation (LLPS) under supersaturated conditions, affecting phase morphology and water uptake propensity. Phase separation and water uptake in ternary systems has previously been parameterized by oxygen to carbon (O[thin space (1/6-em)]:[thin space (1/6-em)]C) ratio; however, nitrogen containing organics, such as amino acid aerosols, also exist within complex mixtures. Yet, amino acid mixture CCN activity is poorly understood. In this study, we study the supersaturated hygroscopicity of three systems of internal mixtures containing ammonium sulfate (AS), 2-methylglutaric acid (2-MGA), and an amino acid. The three systems are AS/2-MGA/proline (Pro), AS/2-MGA/valine (Val), and AS/2-MGA/leucine (Leu). The amino acids are similar in O[thin space (1/6-em)]:[thin space (1/6-em)]C ratios but vary in solubility. Water-uptake, across a range of aerosol compositions in the ternary space, is measured using a cloud condensation nuclei counter (CCNC) from 0.4 to 1.7% supersaturation (SS). The single hygroscopicity parameter, κ, was calculated from CCNC measurements. All three systems exhibit two regions; one of these regions is phase separated mixtures when the composition is dominated by AS and 2-MGA; 2-MGA partitions to the droplet surface due to its surface-active nature and has a negligible contribution to water uptake. The second region is a homogeneous aerosol mixture, where all three compounds contribute to hygroscopicity. However, well mixed aerosol hygroscopicity is dependent on the solubility of the amino acid. Mixed Pro aerosols are the most hygroscopic while Leu aerosols are the least hygroscopic. Theoretical κ values were calculated using established models, including traditional κ-Köhler, O[thin space (1/6-em)]:[thin space (1/6-em)]C solubility and O[thin space (1/6-em)]:[thin space (1/6-em)]C-LLPS models. To account for the possible influence of polar N–C bonds on solubility and water uptake, the X[thin space (1/6-em)]:[thin space (1/6-em)]C parameterization is introduced through the X[thin space (1/6-em)]:[thin space (1/6-em)]C solubility and X[thin space (1/6-em)]:[thin space (1/6-em)]C-LLPS models; X[thin space (1/6-em)]:[thin space (1/6-em)]C is obtained from the ratio of oxygen and nitrogen to carbon. The study demonstrates competing organic–inorganic interactions driven by salting out effects in the presence of AS. Traditional methods cannot further encapsulate the non-ideal thermodynamic interactions within nitrogen-containing organic aerosol mixtures thus predictions of LLPS and hygroscopicity in nitrogen containing ternary systems should incorporate surface activity, O–C, N–C bonds, and salting out effects. 
    more » « less