In the physics of condensed matter, quantum critical phenomena and unconventional superconductivity are two major themes. In electron-doped cuprates, the low critical field (HC2) allows one to study the putative quantum critical point (QCP) at low temperature and to understand its connection to the long-standing problem of the origin of the high-
High entropy alloys (HEA) are an unusual class of materials where mixtures of elements are stochastically arrayed on a simple crystalline lattice. These systems exhibit remarkable functionality, often along several distinct axes: e.g., the examples [TaNb]1-x(TiZrHf)xare high strength and damage resistant refractory metals that also exhibit superconductivity with large upper critical fields. Here we report the discovery of an
- Publication Date:
- NSF-PAR ID:
- 10154411
- Journal Name:
- Scientific Reports
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2045-2322
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
TC superconductivity. Here we present measurements of the low-temperature normal-state thermopower (S ) of the electron-doped cuprate superconductor La2−x Cex CuO4(LCCO) fromx = 0.11–0.19. We observe quantum criticalversus behavior over an unexpectedly wide doping range x = 0.15–0.17 above the QCP (x = 0.14), with a slope that scales monotonicallymore » -
Abstract Actinide materials exhibit strong spin–lattice coupling and electronic correlations, and are predicted to host new emerging ground states. One example is piezomagnetism and magneto-elastic memory effect in the antiferromagnetic Mott-Hubbard insulator uranium dioxide, though its microscopic nature is under debate. Here, we report X-ray diffraction studies of oriented uranium dioxide crystals under strong pulsed magnetic fields. In the antiferromagnetic state a [888] Bragg diffraction peak follows the bulk magnetostriction that expands under magnetic fields. Upon reversal of the field the expansion turns to contraction, before the [888] peak follows the switching effect and piezomagnetic ‘butterfly’ behaviour, characteristic of twomore »
-
Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys
Abstract This paper presents a bilinear log model, for predicting temperature-dependent ultimate strength of high-entropy alloys (HEAs) based on 21 HEA compositions. We consider the break temperature,
T break, introduced in the model, an important parameter for design of materials with attractive high-temperature properties, one warranting inclusion in alloy specifications. For reliable operation, the operating temperature of alloys may need to stay belowT break. We introduce a technique of global optimization, one enabling concurrent optimization of model parameters over low-temperature and high-temperature regimes. Furthermore, we suggest a general framework for joint optimization of alloy properties, capable of accounting for physics-based dependencies, and showmore » -
Versatile chemical transformations of surface functional groups in two-dimensional transition-metal carbides (MXenes) open up a previously unexplored design space for this broad class of functional materials. We introduce a general strategy to install and remove surface groups by performing substitution and elimination reactions in molten inorganic salts. Successful synthesis of MXenes with oxygen, imido, sulfur, chlorine, selenium, bromine, and tellurium surface terminations, as well as bare MXenes (no surface termination), was demonstrated. These MXenes show distinctive structural and electronic properties. For example, the surface groups control interatomic distances in the MXene lattice, and Ti
n +1Cn (n = 1, 2) MXenes terminated with telluridemore » -
Abstract In the field of beam physics, two frontier topics have taken center stage due to their potential to enable new approaches to discovery in a wide swath of science. These areas are: advanced, high gradient acceleration techniques, and x-ray free electron lasers (XFELs). Further, there is intense interest in the marriage of these two fields, with the goal of producing a very compact XFEL. In this context, recent advances in high gradient radio-frequency cryogenic copper structure research have opened the door to the use of surface electric fields between 250 and 500 MV m−1. Such an approach is foreseenmore »