skip to main content

Title: Lithographically patterned metallic conduction in single-layer MoS2 via plasma processing

Tailoring the electrical transport properties of two-dimensional transition metal dichalcogenides can enable the formation of atomically thin circuits. In this work, cyclic hydrogen and oxygen plasma exposures are utilized to introduce defects and oxidize MoS2in a controlled manner. This results in the formation of sub-stochiometric MoO3−x, which transforms the semiconducting behavior to metallic conduction. To demonstrate functionality, single flakes of MoS2were lithographically oxidized using electron beam lithography and subsequent plasma exposures. This enabled the formation of atomically thin inverters from a single flake of MoS2, which represents an advancement toward atomically thin circuitry.

; ; ; ; ; ; ;
Publication Date:
Journal Name:
npj 2D Materials and Applications
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A knowledge-based understanding of the plasma-surface-interaction with the aim to precisely control (reactive) sputtering processes for the deposition of thin films with tailored and reproducible properties is highly desired for industrial applications. In order to understand the effect of plasma parameter variations on the film properties, a single plasma parameter needs to be varied, while all other process and plasma parameters should remain constant. In this work, we use the Electrical Asymmetry Effect in a multi-frequency capacitively coupled plasma to control the ion energy at the substrate without affecting the ion-to-growth flux ratio by adjusting the relative phase between two consecutive driving harmonics and their voltage amplitudes. Measurements of the ion energy distribution function and ion flux at the substrate by a retarding field energy analyzer combined with the determined deposition rateRdfor a reactive Ar/N2(8:1) plasma at 0.5 Pa show a possible variation of the mean ion energy at the substrateEmigwithin a range of 38 and 81 eV that allows the modification of the film characteristics at the grounded electrode, when changing the relative phase shiftθbetween the applied voltage frequencies, while the ion-to-growth flux ratio Γiggrcan be kept constant. AlN thin films are deposited and exhibit an increase inmore »compressive film stress from −5.8 to −8.4 GPa as well as an increase in elastic modulus from 175 to 224 GPa as a function of the mean ion energy. Moreover, a transition from the preferential orientation (002) at low ion energies to the (100), (101) and (110) orientations at higher ion energies is observed. In this way, the effects of the ion energy on the growing film are identified, while other process relevant parameters remain unchanged.

    « less
  2. Abstract

    Controlling the structure of catalysts at the atomic level provides an opportunity to establish detailed understanding of the catalytic form-to-function and realize new, non-equilibrium catalytic structures. Here, advanced thin-film deposition is used to control the atomic structure of La2/3Sr1/3MnO3, a well-known catalyst for the oxygen reduction reaction. The surface and sub-surface is customized, whereas the overall composition andd-electron configuration of the oxide is kept constant. Although the addition of SrMnO3benefits the oxygen reduction reaction via electronic structure and conductivity improvements, SrMnO3can react with ambient air to reduce the surface site availability. Placing SrMnO3in the sub-surface underneath a LaMnO3overlayer allows the catalyst to maintain the surface site availability while benefiting from improved electronic effects. The results show the promise of advanced thin-film deposition for realizing atomically precise catalysts, in which the surface and sub-surface structure and stoichiometry are tailored for functionality, over controlling only bulk compositions.

  3. The 2D van der Waals crystals have shown great promise as potential future electronic materials due to their atomically thin and smooth nature, highly tailorable electronic structure, and mass production compatibility through chemical synthesis. Electronic devices, such as field effect transistors (FETs), from these materials require patterning and fabrication into desired structures. Specifically, the scale up and future development of “2D”-based electronics will inevitably require large numbers of fabrication steps in the patterning of 2D semiconductors, such as transition metal dichalcogenides (TMDs). This is currently carried out via multiple steps of lithography, etching, and transfer. As 2D devices become more complex (e.g., numerous 2D materials, more layers, specific shapes, etc.), the patterning steps can become economically costly and time consuming. Here, we developed a method to directly synthesize a 2D semiconductor, monolayer molybdenum disulfide (MoS2), in arbitrary patterns on insulating SiO2/Si via seed-promoted chemical vapor deposition (CVD) and substrate engineering. This method shows the potential of using the prepatterned substrates as a master template for the repeated growth of monolayer MoS2patterns. Our technique currently produces arbitrary monolayer MoS2patterns at a spatial resolution of 2 μm with excellent homogeneity and transistor performance (room temperature electron mobility of 30 cm2V−1s−1and on–off currentmore »ratio of 107). Extending this patterning method to other 2D materials can provide a facile method for the repeatable direct synthesis of 2D materials for future electronics and optoelectronics.

    « less
  4. A transparent indium tin oxide (ITO) contact to bulk n-GaN and n-GaN thin film on c-face sapphire with a specific contact resistivity of 8.06 × 10−4Ω.cm2and 3.71 × 10−4Ω.cm2was measured, respectively. Our studies relied on an RF sputtering system for ITO deposition. We have investigated the formation of the ITO-based contacts on untreated and plasma treated samples. A nonlinearI–Vcurve was observed for ITO deposited on untreated samples. On the other hand, anI–Vcurve with linear behavior was observed for plasma-treated samples, indicating the formation of ohmic contacts. From theC-Vmeasurements, it was observed that there was also an increase in the carrier concentration in plasma treated samples compared to untreated samples. This can be attributed to the removal of surface oxide layer present on the GaN surface, and increase in nitrogen vacancies after SiCl4plasma treatment. In addition, the increase in nitrogen vacancies at the GaN surface can also enhance localized surface/sub-surface carriers, thereby reducing the contact resistance further.

  5. Abstract

    The recent discovery of magnetism in atomically thin layers of van der Waals crystals has created great opportunities for exploring light–matter interactions and magneto-optical phenomena in the two-dimensional limit. Optical and magneto-optical experiments have provided insights into these topics, revealing strong magnetic circular dichroism and giant Kerr signals in atomically thin ferromagnetic insulators. However, the nature of the giant magneto-optical responses and their microscopic mechanism remain unclear. Here, by performing first-principlesGWand Bethe-Salpeter equation calculations, we show that excitonic effects dominate the optical and magneto-optical responses in the prototypical two-dimensional ferromagnetic insulator, CrI3. We simulate the Kerr and Faraday effects in realistic experimental setups, and based on which we predict the sensitive frequency- and substrate-dependence of magneto-optical responses. These findings provide physical understanding of the phenomena as well as potential design principles for engineering magneto-optical and optoelectronic devices using two-dimensional magnets.