skip to main content


Title: Pressure dependence of direct optical transitions in ReS2 and ReSe2
Abstract

The ReX2system (X = S, Se) exhibits unique properties that differ from other transition metal dichalcogenides. Remarkably, its reduced crystal symmetry results in a complex electronic band structure that confers this material in-plane anisotropic properties. In addition, multilayered ReX2presents a strong 2D character even in its bulk form. To fully understand the interlayer interaction in this system, it is necessary to obtain an accurate picture of the electronic band structure. Here, we present an experimental and theoretical study of the electronic band structure of ReS2and ReSe2at high-hydrostatic pressures. The experiments are performed by photoreflectance spectroscopy and are analyzed in terms of ab initio calculations within the density functional theory. Experimental pressure coefficients for the two most dominant excitonic transitions are obtained and compared with those predicted by the calculations. We assign the transitions to the Zk-point of the Brillouin zone and otherk-points located away from high-symmetry points. The origin of the pressure coefficients of the measured direct transitions is discussed in terms of orbital analysis of the electronic structure and van der Waals interlayer interaction. The anisotropic optical properties are studied at high pressure by means of polarization-resolved photoreflectance measurements.

 
more » « less
Award ID(s):
1838443
NSF-PAR ID:
10154431
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj 2D Materials and Applications
Volume:
3
Issue:
1
ISSN:
2397-7132
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Theoretical and experimental investigations of various exfoliated samples taken from layered In4Se3crystals are performed. In spite of the ionic character of interlayer interactions in In4Se3and hence much higher calculated cleavage energies compared to graphite, it is possible to produce few‐nanometer‐thick flakes of In4Se3by mechanical exfoliation of its bulk crystals. The In4Se3flakes exfoliated on Si/SiO2have anisotropic electronic properties and exhibit field‐effect electron mobilities of about 50 cm2 V−1 s−1at room temperature, which are comparable with other popular transition metal chalcogenide (TMC) electronic materials, such as MoS2and TiS3. In4Se3devices exhibit a visible range photoresponse on a timescale of less than 30 ms. The photoresponse depends on the polarization of the excitation light consistent with symmetry‐dependent band structure calculations for the most expectedaccleavage plane. These results demonstrate that mechanical exfoliation of layered ionic In4Se3crystals is possible, while the fast anisotropic photoresponse makes In4Se3a competitive electronic material, in the TMC family, for emerging optoelectronic device applications.

     
    more » « less
  2. Abstract

    Trigonal tellurium (Te) is a chiral semiconductor that lacks both mirror and inversion symmetries, resulting in complex band structures with Weyl crossings and unique spin textures. Detailed time-resolved polarized reflectance spectroscopy is used to investigate its band structure and carrier dynamics. The polarized transient spectra reveal optical transitions between the uppermost spin-splitH4andH5and the degenerateH6valence bands (VB) and the lowest degenerateH6conduction band (CB) as well as a higher energy transition at the L-point. Surprisingly, the degeneracy of theH6CB (a proposed Weyl node) is lifted and the spin-split VB gap is reduced upon photoexcitation before relaxing to equilibrium as the carriers decay. Using ab initio density functional theory (DFT) calculations, we conclude that the dynamic band structure is caused by a photoinduced shear strain in the Te film that breaks the screw symmetry of the crystal. The band-edge anisotropy is also reflected in the hot carrier decay rate, which is a factor of two slower along the c-axis than perpendicular to it. The majority of photoexcited carriers near the band-edge are seen to recombine within 30 ps while higher lying transitions observed near 1.2 eV appear to have substantially longer lifetimes, potentially due to contributions of intervalley processes in the recombination rate. These new findings shed light on the strong correlation between photoinduced carriers and electronic structure in anisotropic crystals, which opens a potential pathway for designing novel Te-based devices that take advantage of the topological structures as well as strong spin-related properties.

     
    more » « less
  3. Abstract

    Previous high-resolution angle-resolved photoemission (ARPES) studies of URu2Si2have characterized the temperature-dependent behavior of narrow-band states close to the Fermi level (EF) at low photon energies near the zone center, with an emphasis on electronic reconstruction due to Brillouin zone folding. A substantial challenge to a proper description is that these states interact with other hole-band states that are generally absent from bulk-sensitive soft x-ray ARPES measurements. Here we provide a more globalk-space context for the presence of such states and their relation to the bulk Fermi surface (FS) topology using synchrotron-based wide-angle and photon energy-dependent ARPES mapping of the electronic structure using photon energies intermediate between the low-energy regime and the high-energy soft x-ray regime. Small-spot spatial dependence,f-resonant photoemission, Si 2pcore-levels, x-ray polarization, surface-dosing modification, and theoretical surface slab calculations are employed to assist identification of bulk versus surface state character of theEF-crossing bands and their relation to specific U- or Si-terminations of the cleaved surface. The bulk FS topology is critically compared to density functional theory (DFT) and to dynamical mean field theory calculations. In addition to clarifying some aspects of the previously measured high symmetry Γ,ZandXpoints, incommensurate 0.6a* nested Fermi-edge states located alongZNZare found to be distinctly different from the DFT FS prediction. The temperature evolution of these states aboveTHO, combined with a more detailed theoretical investigation of this region, suggests a key role of theN-point in the hidden order transition.

     
    more » « less
  4. Abstract

    Kagomé metals are widely recognized, versatile platforms for exploring topological properties, unconventional electronic correlations, magnetic frustration, and superconductivity. In theRV6Sn6family of materials (R= Sc, Y, Lu), ScV6Sn6hosts an unusual charge density wave ground state as well as structural similarities with theAV3Sb5system (A= K, Cs, Rb). In this work, we combine Raman scattering spectroscopy with first-principles lattice dynamics calculations to reveal phonon mixing processes in the charge density wave state of ScV6Sn6. In the low temperature phase, we find at least four new peaks in the vicinity of the V-containing totally symmetric mode near 240 cm−1suggesting that the density wave acts to mix modes ofP6/mmmand$$R\bar{3}m$$R3¯msymmetry - a result that we quantify by projecting phonons of the high symmetry state onto those of the lower symmetry structure. We also test the stability of the short-range ordered density wave state under compression and propose that both physical and chemical pressure quench the effect. We discuss these findings in terms of symmetry and the structure-property trends that can be unraveled in this system.

     
    more » « less
  5. Abstract

    Accurate and efficient predictions of the quasiparticle properties of complex materials remain a major challenge due to the convergence issue and the unfavorable scaling of the computational cost with respect to the system size. QuasiparticleGWcalculations for two-dimensional (2D) materials are especially difficult. The unusual analytical behaviors of the dielectric screening and the electron self-energy of 2D materials make the conventional Brillouin zone (BZ) integration approach rather inefficient and require an extremely densek-grid to properly converge the calculated quasiparticle energies. In this work, we present a combined nonuniform subsampling and analytical integration method that can drastically improve the efficiency of the BZ integration in 2DGWcalculations. Our work is distinguished from previous work in that, instead of focusing on the intricate dielectric matrix or the screened Coulomb interaction matrix, we exploit the analytical behavior of various terms of the convolved self-energy Σ(q) in the smallqlimit. This method, when combined with another acceleratedGWmethod that we developed recently, can drastically speed up (by over three orders of magnitude)GWcalculations for 2D materials. Our method allows fully convergedGWcalculations for complex 2D systems at a fraction of computational cost, facilitating future high throughput screening of the quasiparticle properties of 2D semiconductors for various applications. To demonstrate the capability and performance of our new method, we have carried out fully convergedGWcalculations for monolayer C2N, a recently discovered 2D material with a large unit cell, and investigate its quasiparticle band structure in detail.

     
    more » « less