skip to main content


Title: The Cape Town “Day Zero” drought and Hadley cell expansion
Abstract

In early 2018, Cape Town (population ~3.7 million) was at risk of being one of the first major metropolitan areas in the world to run out of water. This was due to a severe multi-year drought that led to the levels of supply dams falling to an unprecedented low. Here we analyze rainfall data from the city catchment areas, including rare centennial records from the surrounding region, to assess the severity of the 2015–2017 drought. We find that there has been a long-term decline in the number of winter rainfall days, but this trend has been generally masked by fluctuations in rainfall intensity. The recent drought is unprecedented in the centennial record and represents a combination of the long-term decline in rainfall days and a more recent decline in rainfall intensity. Cold fronts during the winter months are responsible for most of the rainfall reaching Cape Town and our analysis shows no robust regional trend in the number of fronts over the last 40 years. Rather, the observed multidecadal decline in rainfall days, which threatens to increase the occurrence of severe drought, appears to be linked to a decrease in the duration of rainfall events associated with cold fronts. This change in rainfall characteristics associated with fronts appears to be linked to Hadley Cell expansion seen across the Southern Hemisphere and an increasing trend in post-frontal high-pressure conditions that suppress orographically enhanced rainfall.

 
more » « less
NSF-PAR ID:
10154432
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Climate and Atmospheric Science
Volume:
2
Issue:
1
ISSN:
2397-3722
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate forecasts agree that increased variability and extremes will tend to reduce the availability of water in many terrestrial ecosystems. Increasingly severe droughts may be exacerbated both by warmer temperatures and by the relative unavailability of water that arrives in more sporadic and intense rainfall events. Using long‐term data and an experimental water manipulation, we examined the resilience of a heterogeneous annual grassland community to a prolonged series of dry winters that led to a decline in plant species richness (2000–2014), followed by a near‐record wet winter (2016–2017), a climatic sequence that broadly resembles the predicted future in its high variability. In our 80, 5‐m2observational plots, species richness did not recover in response to the wet winter, and the positive relationship of richness to annual winter rainfall thus showed a significant weakening trend over the 18‐year time period. In experiments on 100, 1‐m2plots, wintertime water supplementation increased and drought shelters decreased the seedling survival and final individual biomass of native annual forbs, the main functional group contributing to the observed long‐term decline in richness. Water supplementation also increased the total cover of native annual forbs, but only increased richness within nested subplots to which seeds were also added. We conclude that prolonged dry winters, by increasing seedling mortality and reducing growth of native forbs, may have diminished the seedbank and thus the recovery potential of diversity in this community. However, the wet winter and the watering treatment did cause recovery of the community mean values of a key functional trait (specific leaf area, an indicator of drought intolerance), suggesting that some aggregate community properties may be stabilized by functional redundancy among species.

     
    more » « less
  2. Abstract

    In early 2018, due in part to a severe and extended meteorological drought, Cape Town was at risk of being one of the first major metropolitan areas in the world to run out of water. The magnitude of the crisis was exacerbated by the fact that such a prolonged and severe drought was both unanticipated and unpredicted. In this work, we analyze data from both observations and seasonal forecasts made as part of the North American Multimodel Ensemble (NMME) to better understand the predictability of rainfall in the Cape Town (CT) region. We find that there are statistically significant correlations between observed CT rainfall and sea surface temperatures in the tropical Atlantic (∼0.45) as well as a pattern of 200-mb geopotential height (z200) anomalies resembling the Southern Annular Mode (SAM; ∼0.4). Examination of hindcasts from the NMME demonstrates that the models accurately reproduce the observed correlation between CT rainfall and z200 anomalies. However, they fail to reproduce correlations between CT rainfall and the tropical South Atlantic. Decomposition of the correlations into contributions from predictable and unpredictable components indicates that CT rainfall in the models is dominated by unpredicted atmospheric variability (correlation ∼ 0.84) relative to predicted (correlation ∼ 0.14), which may be related to the failure to simulate the connection with the tropical Atlantic.

    Significance Statement

    Water crises are occurring with increasing severity and frequency around the globe. The ability to accurately forecast wet season rainfall would be invaluable to water managers and other decision-makers. Here, we explore the reasons behind the failure of a suite of operational seasonal forecast models to accurately predict rainfall in the Cape Town region of South Africa.

     
    more » « less
  3. Abstract

    The US Southwest is in a drought crisis that has been developing over the past two decades, contributing to marked increases in burned forest areas and unprecedented efforts to reduce water consumption. Climate change has contributed to this ongoing decadal drought via warming that has increased evaporative demand and reduced snowpack and streamflows. However, on the supply side, precipitation has been low during the 21st century. Here, using simulations with an atmosphere model forced by imposed sea surface temperatures, we show that the 21st century shift to cooler tropical Pacific sea surface temperatures forced a decline in cool season precipitation that in turn drove a decline in spring to summer soil moisture in the southwest. We then project the near-term future out to 2040, accounting for plausible and realistic natural decadal variability of the Pacific and Atlantic Oceans and radiatively-forced change. The future evolution of decadal variability in the Pacific and Atlantic will strongly influence how wet or dry the southwest is in coming decades as a result of the influence on cool season precipitation. The worst-case scenario involves a continued cold state of the tropical Pacific and the development of a warm state of the Atlantic while the best case scenario would be a transition to a warm state of the tropical Pacific and the development of a cold state of the Atlantic. Radiatively-forced cool season precipitation reduction is strongest if future forced SST change continues the observed pattern of no warming in the equatorial Pacific cold tongue. Although this is a weaker influence on summer soil moisture than natural decadal variability, no combination of natural decadal variability and forced change ensures a return to winter precipitation or summer soil moisture levels as high as those in the final two decades of the 20th century.

     
    more » « less
  4. Abstract

    Strengthened by polar amplification, Arctic warming provides direct evidence for global climate change. This analysis shows how Arctic surface air temperature (SAT) extremes have changed throughout time. Using ERA5, we demonstrate a pan-Arctic (>60°N) significant upward SAT trend of +0.62°C decade−1since 1979. Due to this warming, the warmest days of each month in the 1980s to 1990s would be considered average today, while the present coldest days would be regarded as normal in the 1980s to 1990s. Over 1979–2021, there was a 2°C (or 7%) reduction of pan-Arctic SAT seasonal cycle, which resulted in warming of the cold SAT extremes by a factor of 2 relative to the SAT trend and dampened trends of the warm SAT extremes by roughly 25%. Since 1979, autumn has seen the strongest increasing trends in daily maximum and minimum temperatures, as well as counts of days with SAT above the 90th percentile and decreasing trends in counts of days with SAT below the 10th percentile, consistent with rapid Arctic sea ice decline and enhanced air–ocean heat fluxes. The modulated SAT seasonal signal has a significant impact on the timing of extremely strong monthly cold and warm spells. The dampening of the SAT seasonal fluctuations is likely to continue to increase as more sea ice melts and upper-ocean warming persists. As a result, the Arctic winter cold SAT extremes may continue to exhibit a faster rate of change than that of the summer warm SAT extremes as the Arctic continues to warm.

    Significance Statement

    As a result of global warming, the Arctic Ocean’s sea ice is receding, exposing more and more areas to air–sea interactions. This reduces the range of seasonal changes in Arctic surface air temperatures (SAT). Since 1979, the reduced seasonal SAT signal has decreased the trend of warm SAT extremes by 25% over the background warming trend and doubled the trend of cold SAT extremes relative to SAT trends. A substantial number of warm and cold spells would not have been identified as exceptional if the reduction of the Arctic SAT seasonal amplitudes had not been taken into account. As the Arctic continues to warm and sea ice continues to diminish, seasonal SAT fluctuations will become more dampened, with the rate of decreasing winter SAT extremes exceeding the rate of increasing summer SAT extremes.

     
    more » « less
  5. Abstract

    Extreme rainfall events in the West African Sahel can be impactful, yet we do not completely understand why such storms develop. Here, we utilize NASA long‐term Integrated Multi‐satellitE Retrievals for Global precipitation measurement (IMERG) rainfall estimates, various atmospheric reanalyses, and Weather Research and Forecasting (WRF) convection‐permitting simulations to further examine the regional/local conditions that led to the development of two extreme events over the Damergou Gap of Niger/Nigeria identified in a prior study. The August 20, 2019 central Niger event is associated with the passage of a westward‐moving convective line. A strong thermal low over eastern Niger preconditions the environment by increasing the atmospheric moisture and vertical wind shear. Cold‐pool outflow boundaries generated from afternoon convection over the higher terrain ahead of the approaching line enhances convergence along the line while slowing down the system's movement, resulting in higher‐intensity rainfall for a longer time over the region. The July 19, 2001 northern Nigerian event has rainfall developing over the Jos Plateau in the afternoon. Guinean Highland ridging combined with low pressure over Niger/Chad produces a strong low‐level height gradient associated with the development of a strong southwesterly flow surge that transports tropical moisture into the region. This surge interacts with the equatorward migration of the Sahel–tropical Africa dryline, enhancing the convergence and convection north of the Jos Plateau. Our results indicate that while extreme rainfall in the Damergou Gap is likely to occur in anomalously moist environments, it is not necessarily associated with highly unstable environments (e.g., convective available potential energy [CAPE] >2,500 J·kg−1). Furthermore, interactions with cold‐pool outflow boundaries generated from other convective areas is important, and local terrain features are influential in the development of such convective areas.

     
    more » « less