Abstract We investigate the linear trends in meridional atmospheric heat transport (AHT) since 1980 in atmospheric reanalysis datasets, coupled climate models, and atmosphere-only climate models forced with historical sea surface temperatures. Trends in AHT are decomposed into contributions from three components of circulation: (i) transient eddies, (ii) stationary eddies, and (iii) the mean meridional circulation. All reanalyses and models agree on the pattern of AHT trends in the Southern Ocean, providing confidence in the trends in this region. There are robust increases in transient-eddy AHT magnitude in the Southern Ocean in the reanalyses, which are well replicated by the atmosphere-only models, while coupled models show smaller magnitude trends. This suggests that the pattern of sea surface temperature trends contributes to the transient-eddy AHT trends in this region. In the tropics, we find large differences between mean-meridional circulation AHT trends in models and the reanalyses, which we connect to discrepancies in tropical precipitation trends. In the Northern Hemisphere, we find less evidence of large-scale trends and more uncertainty, but note several regions with mismatches between models and the reanalyses that have dynamical explanations. Throughout this work we find strong compensation between the different components of AHT, most notably in the Southern Ocean where transient-eddy AHT trends are well compensated by trends in the mean-meridional circulation AHT, resulting in relatively small total AHT trends. This highlights the importance of considering AHT changes holistically, rather than each AHT component individually.
more »
« less
Linking midlatitudes eddy heat flux trends and polar amplification
Abstract Eddy heat fluxes play the important role of transferring heat from low to high latitudes, thus affecting midlatitude climate. The recent and projected polar warming, and its effects on the meridional temperature gradients, suggests a possible weakening of eddy heat fluxes. We here examine this question in reanalyses and state-of-the-art global climate models. In the Northern Hemisphere we find that the eddy heat flux has robustly weakened over the last four decades. We further show that this weakening emerged from the internal variability around the year 2000, and we attribute it to increasing greenhouse gases. In contrast, in the Southern Hemisphere we find that the eddy heat flux has robustly strengthened, and we link this strengthening to the recent multi-decadal cooling of Southern-Ocean surface temperatures. The inability of state-of-the-art climate models to simulate such cooling prevents them from capturing the observed Southern Hemisphere strengthening of the eddy heat flux. This discrepancy between models and reanalyses provides a clear example of how model biases in polar regions can affect the midlatitude climate.
more »
« less
- Award ID(s):
- 1745029
- PAR ID:
- 10154442
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Climate and Atmospheric Science
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2397-3722
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Many studies have documented the trends in the latitudinal position and strength of the midlatitude westerlies in the Southern Hemisphere. However, very little attention has been paid to the longitudinal variations of these trends. Here, we specifically focus on the zonal asymmetries in the southern hemisphere wind trends between 1980 and 2018. Meteorological reanalyses show a large strengthening and a statistically insignificant equatorward shift of peak near‐surface winds over the Pacific, in contrast to a weaker strengthening and significant poleward shift over the Atlantic and Indian Ocean sectors. The reanalysis trends fall within the ensemble spread for historical climate model simulations, showing that climate models are able to capture the observed trends. Climate model simulations indicate that the differential movement of the peak westerlies is a manifestation of internal variability and is not a forced response. Implications of these asymmetries for other components of the climate system are discussed.more » « less
-
Abstract Observed surface temperature trends over recent decades are characterized by (a) intensified warming in the Indo‐Pacific Warm Pool and slight cooling in the eastern equatorial Pacific, consistent with Walker circulation strengthening, and (b) Southern Ocean cooling. In contrast, state‐of‐the‐art coupled climate models generally project enhanced warming in the eastern equatorial Pacific, Walker circulation weakening, and Southern Ocean warming. Here we investigate the ability of 16 climate model large ensembles to reproduce observed sea‐surface temperature and sea‐level pressure trends over 1979–2020 through a combination of externally forced climate change and internal variability. We find large‐scale differences between observed and modeled trends that are very unlikely (<5% probability) to occur due to internal variability as represented in models. Disparate trends in the ratio of Indo‐Pacific Warm Pool to tropical‐mean warming, which shows little multi‐decadal variability in models, hint that model biases in the response to historical forcing constitute part of the discrepancy.more » « less
-
null (Ed.)Abstract Motivated by the hemispheric asymmetry of land distribution on Earth, we explore the climate of Northland, a highly idealized planet with a Northern Hemisphere continent and a Southern Hemisphere ocean. The climate of Northland can be separated into four distinct regions: the Southern Hemisphere ocean, the seasonally wet tropics, the midlatitude desert, and the Great Northern Swamp. We evaluate how modifying land surface properties on Northland drives changes in temperatures, precipitation patterns, the global energy budget, and atmospheric dynamics. We observe a surprising response to changes in land surface evaporation, where suppressing terrestrial evaporation in Northland cools both land and ocean. In previous studies, suppressing terrestrial evaporation has been found to lead to local warming by reducing latent cooling of the land surface. However, reduced evaporation can also decrease atmospheric water vapor, reducing the strength of the greenhouse effect and leading to large-scale cooling. We use a set of idealized climate model simulations to show that suppressing terrestrial evaporation over Northern Hemisphere continents of varying size can lead to either warming or cooling of the land surface, depending on which of these competing effects dominates. We find that a combination of total land area and contiguous continent size controls the balance between local warming from reduced latent heat flux and large-scale cooling from reduced atmospheric water vapor. Finally, we demonstrate how terrestrial heat capacity, albedo, and evaporation all modulate the location of the ITCZ both over the continent and over the ocean.more » « less
-
null (Ed.)Abstract. This study quantifies differences among four widely usedatmospheric reanalysis datasets (ERA5, JRA-55, MERRA-2, and CFSR) in theirrepresentation of the dynamical changes induced by springtime polarstratospheric ozone depletion in the Southern Hemisphere from 1980 to 2001.The intercomparison is undertaken as part of the SPARC(Stratosphere–troposphere Processes and their Role in Climate) ReanalysisIntercomparison Project (S-RIP). The reanalyses are generally in goodagreement in their representation of the strengthening of the lowerstratospheric polar vortex during the austral spring–summer season,associated with reduced radiative heating due to ozone loss, as well as thedescent of anomalously strong westerly winds into the troposphere duringsummer and the subsequent poleward displacement and intensification of thepolar front jet. Differences in the trends in zonal wind between thereanalyses are generally small compared to the mean trends. The exception isCFSR, which exhibits greater disagreement compared to the other threereanalysis datasets, with stronger westerly winds in the lower stratospherein spring and a larger poleward displacement of the tropospheric westerlyjet in summer. The dynamical changes associated with the ozone hole are examined byinvestigating the momentum budget and then the eddy heat and momentumfluxes in terms of planetary- and synoptic-scale Rossby wave contributions.The dynamical changes are consistently represented across the reanalysesand support our dynamical understanding of the response of the coupledstratosphere–troposphere system to the ozone hole. Although our resultssuggest a high degree of consistency across the four reanalysis datasets inthe representation of these dynamical changes, there are larger differencesin the wave forcing, residual circulation, and eddy propagation changes compared to the zonal wind trends. In particular, there is a noticeabledisparity in these trends in CFSR compared to the other three reanalyses,while the best agreement is found between ERA5 and JRA-55. Greateruncertainty in the components of the momentum budget, as opposed to meancirculation, suggests that the zonal wind is better constrained by theassimilation of observations compared to the wave forcing, residualcirculation, and eddy momentum and heat fluxes, which are more dependent onthe model-based forecasts that can differ between reanalyses. Lookingforward, however, these findings give us confidence that reanalysis datasetscan be used to assess changes associated with the ongoing recovery ofstratospheric ozone.more » « less
An official website of the United States government
