Abstract Sulfate/sulfite-reducing microorganisms (SRM) are ubiquitous in nature, driving the global sulfur cycle. A hallmark of SRM is the dissimilatory sulfite reductase encoded by the genes dsrAB. Based on analysis of 950 mainly metagenome-derived dsrAB-carrying genomes, we redefine the global diversity of microorganisms with the potential for dissimilatory sulfate/sulfite reduction and uncover genetic repertoires that challenge earlier generalizations regarding their mode of energy metabolism. We show: (i) 19 out of 23 bacterial and 2 out of 4 archaeal phyla harbor uncharacterized SRM, (ii) four phyla including the Desulfobacterota harbor microorganisms with the genetic potential to switch between sulfate/sulfite reduction and sulfur oxidation, and (iii) the combination as well as presence/absence of different dsrAB-types, dsrL-types and dsrD provides guidance on the inferred direction of dissimilatory sulfur metabolism. We further provide an updated dsrAB database including > 60% taxonomically resolved, uncultured family-level lineages and recommendations on existing dsrAB-targeted primers for environmental surveys. Our work summarizes insights into the inferred ecophysiology of newly discovered SRM, puts SRM diversity into context of the major recent changes in bacterial and archaeal taxonomy, and provides an up-to-date framework to study SRM in a global context. 
                        more » 
                        « less   
                    
                            
                            Phylogenomic analysis of novel Diaforarchaea is consistent with sulfite but not sulfate reduction in volcanic environments on early Earth
                        
                    
    
            Abstract The origin(s) of dissimilatory sulfate and/or (bi)sulfite reducing organisms (SRO) remains enigmatic despite their importance in global carbon and sulfur cycling since at least 3.4 Ga. Here, we describe novel, deep-branching archaeal SRO populations distantly related to other Diaforarchaea from two moderately acidic thermal springs. Dissimilatory (bi)sulfite reductase homologs, DsrABC, encoded in metagenome assembled genomes (MAGs) from spring sediments comprise one of the earliest evolving Dsr lineages. DsrA homologs were expressed in situ under moderately acidic conditions. MAGs lacked genes encoding proteins that activate sulfate prior to (bi)sulfite reduction. This is consistent with sulfide production in enrichment cultures provided sulfite but not sulfate. We suggest input of volcanic sulfur dioxide to anoxic spring-water yields (bi)sulfite and moderately acidic conditions that favor its stability and bioavailability. The presence of similar volcanic springs at the time SRO are thought to have originated (>3.4 Ga) may have supplied (bi)sulfite that supported ancestral SRO. These observations coincide with the lack of inferred SO42− reduction capacity in nearly all organisms with early-branching DsrAB and which are near universally found in hydrothermal environments. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1820658
- PAR ID:
- 10154443
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- The ISME Journal
- Volume:
- 14
- Issue:
- 5
- ISSN:
- 1751-7362
- Format(s):
- Medium: X Size: p. 1316-1331
- Size(s):
- p. 1316-1331
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Many Archaea produce membrane‐spanning lipids that enable life in extreme environments. These isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) may contain up to eight cyclopentyl and one cyclohexyl ring, where higher degrees of cyclization are associated with more acidic, hotter or energy‐limited conditions. Recently, the genes encoding GDGT ring synthases,grsAB, were identified in two Sulfolobaceae; however, the distribution and abundance ofgrshomologs across environments inhabited by these and related organisms remain a mystery. To address this, we examined the distribution ofgrshomologs in relation to environmental temperature and pH, from thermal springs across Earth, where sequences derive from metagenomes, metatranscriptomes, single‐cell and cultivar genomes. The abundance ofgrshomologs shows a strong negative correlation to pH, but a weak positive correlation to temperature. Archaeal genomes and metagenome‐assembled genomes (MAGs) that carry two or moregrscopies are more abundant in low pH springs. We also findgrsin 12 archaeal classes, with the most representatives in Thermoproteia, followed by MAGs of the uncultured Korarchaeia, Bathyarchaeia and Hadarchaeia, while several Nitrososphaeria encodes >3 copies. Our findings highlight the key role ofgrs‐catalysed lipid cyclization in archaeal diversification across hot and acidic environments.more » « less
- 
            Fukami, Tadashi (Ed.)The oxidation of sulfur compounds drives the acidification of geothermal waters. At high temperatures (>80°C) and in acidic conditions (pH <6.0), oxidation of sulfide has historically been considered an abiotic process that generates elemental sulfur (S0) that, in turn, is oxidized by thermoacidophiles of the model archaeal order Sulfolobales to generate sulfuric acid (i.e. sulfate and protons). Here, we describe five new aerobic and autotrophic strains of Sulfolobales comprising two species that were isolated from acidic hot springs in Yellowstone National Park (YNP) and that can use sulfide as an electron donor. These strains significantly accelerated the rate and extent of sulfide oxidation to sulfate relative to abiotic controls, concomitant with production of cells. Yields of sulfide-grown cultures were ∼2-fold greater than those of S0-grown cultures, consistent with thermodynamic calculations indicating more available energy in the former condition than the latter. Homologs of sulfide:quinone oxidoreductase (Sqr) were identified in nearly all Sulfolobales genomes from YNP metagenomes as well as those from other reference Sulfolobales, suggesting a widespread ability to accelerate sulfide oxidation. These observations expand the role of Sulfolobales in the oxidative sulfur cycle, the geobiological feedbacks that drive the formation of acidic hot springs, and landscape evolution.more » « less
- 
            Abstract Microorganisms play vital roles in sulfur cycling through the oxidation of elemental sulfur and reduction of sulfite. These metabolisms are catalyzed by dissimilatory sulfite reductases (Dsr) functioning in either the reductive or reverse, oxidative direction. Dsr-mediated sulfite reduction is an ancient metabolism proposed to have fueled energy metabolism in some of Earth’s earliest microorganisms, whereas sulfur oxidation is believed to have evolved later in association with the widespread availability of oxygen on Earth. Organisms are generally believed to carry out either the reductive or oxidative pathway, yet organisms from diverse phyla have been discovered with gene combinations that implicate them in both pathways. A comprehensive investigation into the metabolisms of these phyla regarding Dsr is currently lacking. Here, we selected one of these phyla, the metabolically versatile candidate phylum SAR324, to study the ecology and evolution of Dsr-mediated metabolism. We confirmed that diverse SAR324 encode genes associated with reductive Dsr, oxidative Dsr, or both. Comparative analyses with other Dsr-encoding bacterial and archaeal phyla revealed that organisms encoding both reductive and oxidative Dsr proteins are constrained to a few phyla. Further, DsrAB sequences from genomes belonging to these phyla are phylogenetically positioned at the interface between well-defined oxidative and reductive bacterial clades. The phylogenetic context and dsr gene content in these organisms points to an evolutionary transition event that ultimately gave way to oxidative Dsr-mediated metabolism. Together, this research suggests that SAR324 and other phyla with mixed dsr gene content are associated with the evolution and origins of Dsr-mediated sulfur oxidation.more » « less
- 
            Summary Little is known about how the geological history of an environment shapes its physical and chemical properties and how these, in turn, influence the assembly of communities. Evening primrose (EP), a moderately acidic hot spring (pH 5.6, 77.4°C) in Yellowstone National Park (YNP), has undergone dramatic physicochemical change linked to seismic activity. Here, we show that this legacy of geologic change led to the development of an unusual sulphur‐rich, anoxic chemical environment that supports a unique archaeal‐dominated and anaerobic microbial community. Metagenomic sequencing and informatics analyses reveal that >96% of this community is supported by dissimilatory reduction or disproportionation of inorganic sulphur compounds, including a novel, deeply diverging sulphate‐reducing thaumarchaeote. When compared to other YNP metagenomes, the inferred functions of EP populations were like those from sulphur‐rich acidic springs, suggesting that sulphur may overprint the predominant influence of pH on the composition of hydrothermal communities. Together, these observations indicate that the dynamic geological history of EP underpins its unique geochemistry and biodiversity, emphasizing the need to consider the legacy of geologic change when describing processes that shape the assembly of communities.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
