skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanism of Cobalt-Catalyzed Heterodimerization of Acrylates and 1,3-Dienes. A Potential Role of Cationic Cobalt(I) Intermediates
Award ID(s):
1900141
PAR ID:
10154903
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACS Catalysis
Volume:
10
Issue:
7
ISSN:
2155-5435
Page Range / eLocation ID:
4337 to 4348
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Litwack, G. (Ed.)
    Vitamin B12 is one of the most complex cofactors known, and this chapter will discuss current understanding with regards to the cobalt insertion step of its syntheses. Two total syntheses of vitamin B12 were reported in the 1970s, which remain two of the most exceptional achievements of natural product synthesis. In subsequent years, two distinct biosynthetic pathways were identified in aerobic and anaerobic organisms. For these biosynthetic pathways, selectivity for Co(II) over other divalent metal ions with similar ionic radii and coordination chemistry remains an open question with three competing hypotheses proposed: metal affinity, tetrapyrrole distortion, and product inhibition. A 20 step biosynthetic route to convert 5-aminolevulinic acid (ALA) to vitamin B12 was elucidated in aerobic organisms in the 1990s, where cobalt is inserted relatively late in the pathway by the CobNST multi-protein complex. This chapter includes a mechanistic proposal for this reaction, but the majority of the proposal is based upon analogy to the ChlDHI magnesium chelatase complex as critical data for the cobalt chelatase is lacking. Later, in the 2010s, a distinct 21 step pathway from ALA to vitamin B12 was reported in anaerobic organisms, where cobalt is inserted early in the pathway by the enzyme CbiK. A recent study strongly suggests that the cobalt affinity of CbiK is the origin of cobalt selectivity for CbiK, but several important mechanistic questions remain unanswered. In general, it is expected that significant insight into the cobalt insertion mechanisms of CobNST and CbiK could be derived from additional structural, spectroscopic, and computational data. 
    more » « less
  2. Cathodes of lithium-ion batteries (LIBs) significantly impact the environmental footprint, cost, and energy performance of the battery-pack. Hence, sustainable production of Li-ion battery cathodes is critically required for ensuring cost-effectiveness, environmental benignity, consumer friendliness, and social justice. Battery chemistry largely determines individual cell performance as well as the battery pack cost and life cycle greenhouse gas emission. Continuous manufacturing platforms improve production efficiency in terms of product yield, quality and cost. Spent-battery recycling ensures the circular economy of critical elements that are required for cathode production. Innovations in fast-charging LIBs are particularly promising for sustainable e-mobility with a reduced carbon footprint. This article provides an overview of these research directions, emphasizing strategies for low-cobalt cathode development, recycling processes, continuous production and improvement in fast-charging capability. 
    more » « less
  3. Mechanism of the Month Feature 
    more » « less