skip to main content


Title: Topography and disturbance influence trait‐based composition and productivity of adjacent habitats in a coastal system
Abstract

Coastal systems experience frequent disturbance and multiple environmental stressors over short spatial and temporal scales. Investigating functional traits in coastal systems has the potential to inform how variation in disturbance frequency and environmental variables influence differences in trait‐based community composition and ecosystem function. Our goals were to (1) quantify trait‐based communities on two barrier islands divergent in topography and long‐term disturbance response and (2) determine relationships between community trait‐based composition and ecosystem productivity. We hypothesized that locations documented with high disturbance would have habitats with similar environmental conditions and trait‐based communities, with the opposite relationship in low‐disturbance locations. Furthermore, we expected higher productivity and lower site‐to‐site variation with low disturbance. Functional traits, biomass, and environmental metrics (soil salinity, elevation, and distance to shoreline) were collected and analyzed for two habitat types (dune and swale) on two Virginia barrier islands. Our results show that trait‐based community composition differed among habitat types and was related to disturbance. Habitats exhibited more similarity on the high‐disturbance island in both trait‐based composition and environmental variables. Conversely, the low‐disturbance island habitats were more dissimilar. We found the habitat with the lowest disturbance had the highest ecosystem productivity and had trait‐based communities indicative of highly competitive environments, while the high‐disturbance trait‐based communities were influenced by traits that indicate rapid recovery and growth. Site‐to‐site variation was similar in all dune habitats but differed among inter‐island swale habitats that varied in disturbance. These results highlight the importance of incorporating trait‐based analyses when approaching questions about community structure and ecosystem productivity in disturbance‐mediated habitats, such as coastal systems.

 
more » « less
Award ID(s):
1832221
NSF-PAR ID:
10458037
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
11
Issue:
5
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Despite recent advances, we still do not understand how chronic nutrient enrichment impacts coastal plant community structure and function. We aimed to clarify such impacts by testing for differences in ecosystem productivity and multiple community metrics in response to fertilization. We established plots in 2015 consisting of control (C), nitrogen (N), phosphorus (P), and nitrogen + phosphorus (NP) treatments in a mid-Atlantic coastal grassland. In 2017 we collected aboveground biomass, functional traits, and species abundance for each plot. Our findings indicate a synergistic co-limitation, such that NP plots were more productive than all other treatments. A combination of traits responsible for competition and nutrient uptake (i.e., height and δ15N) caused trait-based divergence of N and NP plots from C and P plots. Functional trait-based composition patterns differed from species composition and lifeform abundance patterns, highlighting complexities of community response to nutrient enrichment. While trait-based functional alpha-diversity did not differ among nutrient treatments, it was positively correlated with biomass production, suggesting nutrients may impact functional alpha-diversity indirectly through increased productivity. Increased functional alpha-diversity could be a mechanism of co-existence emerging as productivity increases. These results have important implications for understanding how plant communities in low-productivity coastal systems are altered by fertilization. 
    more » « less
  2. null (Ed.)
    Coastal salt marshes are distributed widely across the globe and are considered essential habitat for many fish and crustacean species. Yet, the literature on fishery support by salt marshes has largely been based on a few geographically distinct model systems, and as a result, inadequately captures the hierarchical nature of salt marsh pattern, process, and variation across space and time. A better understanding of geographic variation and drivers of commonalities and differences across salt marsh systems is essential to informing future management practices. Here, we address the key drivers of geographic variation in salt marshes: hydroperiod, seascape configuration, geomorphology, climatic region, sediment supply and riverine input, salinity, vegetation composition, and human activities. Future efforts to manage, conserve, and restore these habitats will require consideration of how environmental drivers within marshes affect the overall structure and subsequent function for fisheries species. We propose a future research agenda that provides both the consistent collection and reporting of sources of variation in small-scale studies and collaborative networks running parallel studies across large scales and geographically distinct locations to provide analogous information for data poor locations. These comparisons are needed to identify and prioritize restoration or conservation efforts, identify sources of variation among regions, and best manage fisheries and food resources across the globe. Introduction Understanding the drivers of geographic variation in the condition and composition of habitats is crucial to our capacity to generalize management plans across space and time and to clarify and perhaps challenge assumptions of functional equivalence among sites. Broadly defined wetland types such as salt marshes are often assumed to provide similar functions throughout their global range, such as providing nursery habitat for fishery species. However, a growing body of evidence suggests substantial geographic variation in the functioning of salt marsh and other coastal ecosystems (Bradley et al. 2020; Whalen et al. 2020). Variation in ecological patterns and processes within habitat types can alter community structure and dynamics. Local-scale patterns and processes (e.g., patch [10s of meters], local [100s of meters]) can be influenced by processes that occur at larger spatial scales (e.g., regional [kms], global), thereby causing geographic differences in the function and ecosystem service delivery of a given habitat type. Salt marshes (which include vegetated platform, interconnected tidal creeks, fringing mudflats, ponds, and pools) are widely distributed (Fig. 1) and function as valuable nursery habitats by providing key resources for many estuarine species that transition to marine or aquatic habitats as adults (Beck et al. 2001; Minello et al. 2003; Sheaves et al. 2015). However, factors that underlie variability in the delivery of ecological functions are still inadequately understood. Previous studies have explored geographic variation in the function of salt marshes for fish and mobile crustaceans (“nekton”; e.g., Minello et al. 2012, Baker et al. 2013). However, field studies that compare multiple sites across a geographical gradient are typically limited in duration and scale. In addition, the explanatory variables (e.g., elevation, flooding duration, plant structure) collected by smaller scale studies are often inconsistent and therefore limit generalizations across sites. 
    more » « less
  3. Abstract Aim

    To examine the climatic and biogeographic drivers of plant trait variation across Caribbean tropical dry forests, a system characterised by high rates of plant endemism despite low moisture availability, high rainfall variability and persistent exposure to hurricanes.

    Location

    Caribbean tropical dry forests.

    Taxon

    Woody plants.

    Methods

    We used a database of 572 woody vegetation plots spanning across the Caribbean, including Florida. We then extracted seed mass, specific leaf area and wood density from global trait databases. We supplemented additional trait data from herbaria collections and calculated phylogenetic imputation of traits. Furthermore, we calculated presence–absence community means and functional diversity and correlated these metrics with bioclimatic variables in addition to island and dry forest area using generalised additive models.

    Results

    Despite occurring in climatically distinct regions, Caribbean tropical dry forests are functionally similar, and the trait space of many dry forests are nested within the functional space of others. In line with island biogeographic theory, island area, dry forest area and island isolation were correlated with functional diversity. Although temperature and precipitation were important determinants of trait variation and functional diversity, environmental variables differently impacted trait variation and the variance explained was generally low.

    Main Conclusions

    The high functional overlap among Caribbean dry forests is remarkable given the broad climatic gradient across these islands. High functional overlap suggests that environmental and biogeographic filters constrain plant form and function in these intrinsically fascinating systems. The trait space of these insular dry forest systems points to dispersal‐limitation, in addition to high temperature and water limitations, and favouring persistence strategies to withstand high frequency hurricane disturbance.

     
    more » « less
  4. null (Ed.)
    Maritime forests are threatened by sea-level rise, storm surge and encroachment of salt-tolerant species. On barrier islands, these forested communities must withstand the full force of tropical storms, hurricanes and nor’easters while the impact is reduced for mainland forests protected by barrier islands. Geographic position may account for differences in maritime forest resilience to disturbance. In this study, we quantify two geographically distinct maritime forests protected by dunes on Virginia’s Eastern Shore (i.e., mainland and barrier island) at two time points (15 and 21 years apart, respectively) to determine whether the trajectory is successional or presenting evidence of disassembly with sea-level rise and storm exposure. We hypothesize that due to position on the landscape, forest disassembly will be higher on the barrier island than mainland as evidenced by reduction in tree basal area and decreased species richness. Rate of relative sea-level rise in the region was 5.9 ± 0.7 mm yr−1 based on monthly mean sea-level data from 1975 to 2017. Savage Neck Dunes Natural Area Preserve maritime forest was surveyed using the point quarter method in 2003 and 2018. Parramore Island maritime forest was surveyed in 1997 using 32 m diameter circular plots. As the island has been eroding over the past two decades, 2016 Landsat imagery was used to identify remaining forested plots prior to resurveying. In 2018, only plots that remained forested were resurveyed. Lidar was used to quantify elevation of each point/plot surveyed in 2018. Plot elevation at Savage Neck was 1.93 ± 0.02 m above sea level, whereas at Parramore Island, elevation was lower at 1.04 ± 0.08 m. Mainland dominant species, Acer rubrum, Pinus taeda, and Liquidambar styraciflua, remained dominant over the study period, with a 14% reduction in the total number of individuals recorded. Basal area increased by 11%. Conversely, on Parramore Island, 33% of the former forested plots converted to grassland and 33% were lost to erosion and occur as ghost forest on the shore or were lost to the ocean. Of the remaining forested plots surveyed in 2018, dominance switched from Persea palustris and Juniperus virginiana to the shrub Morella cerifera. Only 46% of trees/shrubs remained and basal area was reduced by 84%. Shrub basal area accounted for 66% of the total recorded in 2018. There are alternative paths to maritime forest trajectory which differ for barrier island and mainland. Geographic position relative to disturbance and elevation likely explain the changes in forest community composition over the timeframes studied. Protected mainland forest at Savage Neck occurs at higher mean elevation and indicates natural succession to larger and fewer individuals, with little change in mixed hardwood-pine dominance. The fronting barrier island maritime forest on Parramore Island has undergone rapid change in 21 years, with complete loss of forested communities to ocean or conversion to mesic grassland. Of the forests remaining, dominant evergreen trees are now being replaced with the expanding evergreen shrub, Morella cerifera. Loss of biomass and basal area has been documented in other low elevation coastal forests. Our results indicate that an intermediate shrub state may precede complete loss of woody communities in some coastal communities, providing an alternative mechanism of resilience. 
    more » « less
  5. Abstract

    Ecosystem engineers modify habitats in ways that facilitate other community members by ameliorating harsh conditions. The strength of such facilitation is predicted to be influenced by both beneficiary traits and abiotic context. One key trait of animals that could control the strength of facilitation is beneficiary body size because it should determine how beneficiaries fit within and exploit stress ameliorating habitat modifications. However, few studies have measured how beneficiary body size relates to facilitation strength along environmental gradients.

    We examined how the strength of facilitation by net‐spinning caddisflies on invertebrate communities in streams varied along an elevation gradient and based on traits of the invertebrate beneficiaries. We measured whether use of silk retreats as habitat concentrated invertebrate density and biomass compared to surrounding rock surface habitat and whether the use of retreat habitat varied across body sizes of community members along the gradient.

    We found that retreats substantially concentrated the densities of a diversity of taxa including eight different Orders, and this effect was greatest at high elevations. Caddisfly retreats also concentrated invertebrate biomass more as elevation increased. Body size of invertebrates inhabiting retreats was lower than that of surrounding rock habitats at low elevation sites, however, body size between retreats and rocks converged at higher elevation sites. Additionally, the body size of invertebrates found in retreats varied within and across taxa. Specifically, caddisfly retreats functioned as a potential nursery for taxa with large maximal body sizes. However, the patterns of this taxon‐specific nursery effect were not influenced by elevation unlike the patterns observed based on community‐level body size.

    Collectively, our results indicate that invertebrates use retreats in earlier life stages or when they are smaller in body size independent of life stage. Furthermore, our analysis suggests that facilitation strength intensifies as elevation increases within stream invertebrate communities.

    Further consideration of how trait variation and environmental gradients interact to determine the strength and direction of biotic interactions will be important as species ranges and environmental conditions continue to shift.

     
    more » « less