skip to main content


Title: Engineering DNA recognition and allosteric response properties of TetR family proteins by using a module-swapping strategy
Abstract The development of synthetic biological systems requires modular biomolecular components to flexibly alter response pathways. In previous studies, we have established a module-swapping design principle to engineer allosteric response and DNA recognition properties among regulators in the LacI family, in which the engineered regulators served as effective components for implementing new cellular behavior. Here we introduced this protein engineering strategy to two regulators in the TetR family: TetR (UniProt Accession ID: P04483) and MphR (Q9EVJ6). The TetR DNA-binding module and the MphR ligand-binding module were used to create the TetR-MphR. This resulting hybrid regulator possesses DNA-binding properties of TetR and ligand response properties of MphR, which is able to control gene expression in response to a molecular signal in cells. Furthermore, we studied molecular interactions between the TetR DNA-binding module and MphR ligand-binding module by using mutant analysis. Together, we demonstrated that TetR family regulators contain discrete and functional modules that can be used to build biological components with novel properties. This work highlights the utility of rational design as a means of creating modular parts for cell engineering and introduces new possibilities in rewiring cellular response pathways.  more » « less
Award ID(s):
1914538
NSF-PAR ID:
10154970
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
47
Issue:
16
ISSN:
0305-1048
Page Range / eLocation ID:
8913 to 8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Genetic sensors with unique combinations of DNA recognition and allosteric response can be created by hybridizing DNA-binding modules (DBMs) and ligand-binding modules (LBMs) from distinct transcriptional repressors. This module swapping approach is limited by incompatibility between DBMs and LBMs from different proteins, due to the loss of critical module-module interactions after hybridization. We determine a design strategy for restoring key interactions between DBMs and LBMs by using a computational model informed by coevolutionary traits in the LacI family. This model predicts the influence of proposed mutations on protein structure and function, quantifying the feasibility of each mutation for rescuing hybrid repressors. We accurately predict which hybrid repressors can be rescued by mutating residues to reinstall relevant module-module interactions. Experimental results confirm that dynamic ranges of gene expression induction were improved significantly in these mutants. This approach enhances the molecular and mechanistic understanding of LacI family proteins, and advances the ability to design modular genetic parts.

     
    more » « less
  2. Abstract

    A recent description of an antibody‐free assay is significantly extended for small molecule analytes using allosteric transcription factors (aTFs) and Förster resonance energy transfer (FRET). The FRET signal indicates the differential binding of an aTF–DNA pair with a dose‐dependent response to its effector molecule, i.e., the analyte. The new sensors described here, based on the well‐characterized aTF TetR, demonstrate several new features of the assay approach: 1) the generalizability of the sensors to additional aTF–DNA–analyte systems, 2) sensitivity modulation through the choice of donor fluorophore (quantum dots or fluorescent proteins, FPs), and 3) sensor tuning using aTF variants with differing aTF–DNA binding affinities. While all of these modular sensors self‐assemble, the design reported here based on a recombinant aTF–FP chimera with commercially available dye‐labeled DNA uses readily accessible sensor components to facilitate easy adoption of the sensing approach by the broader community.

     
    more » « less
  3. Abstract Background Cyanobacteria maintain extensive repertoires of regulatory genes that are vital for adaptation to environmental stress. Some cyanobacterial genomes have been noted to encode diversity-generating retroelements (DGRs), which promote protein hypervariation through localized retrohoming and codon rewriting in target genes. Past research has shown DGRs to mainly diversify proteins involved in cell-cell attachment or viral-host attachment within viral, bacterial, and archaeal lineages. However, these elements may be critical in driving variation for proteins involved in other core cellular processes. Results Members of 31 cyanobacterial genera encode at least one DGR, and together, their retroelements form a monophyletic clade of closely-related reverse transcriptases. This class of retroelements diversifies target proteins with unique domain architectures: modular ligand-binding domains often paired with a second domain that is linked to signal response or regulation. Comparative analysis indicates recent intragenomic duplication of DGR targets as paralogs, but also apparent intergenomic exchange of DGR components. The prevalence of DGRs and the paralogs of their targets is disproportionately high among colonial and filamentous strains of cyanobacteria. Conclusion We find that colonial and filamentous cyanobacteria have recruited DGRs to optimize a ligand-binding module for apparent function in signal response or regulation. These represent a unique class of hypervariable proteins, which might offer cyanobacteria a form of plasticity to adapt to environmental stress. This analysis supports the hypothesis that DGR-driven mutation modulates signaling and regulatory networks in cyanobacteria, suggestive of a new framework for the utility of localized genetic hypervariation. 
    more » « less
  4. LysR-type transcriptional regulators (LTTRs) form one of the largest families of bacterial regulators. They are widely distributed and contribute to all aspects of metabolism and physiology. Most are homotetramers, with each subunit composed of an N-terminal DNA-binding domain followed by a long helix connecting to an effector-binding domain. LTTRs typically bind DNA in the presence or absence of a small-molecule ligand (effector). In response to cellular signals, conformational changes alter DNA interactions, contact with RNA polymerase, and sometimes contact with other proteins. Many are dual-function repressor–activators, although different modes of regulation may occur at multiple promoters. This review presents an update on the molecular basis of regulation, the complexity of regulatory schemes, and applications in biotechnology and medicine. The abundance of LTTRs reflects their versatility and importance. While a single regulatory model cannot describe all family members, a comparison of similarities and differences provides a framework for future study. Expected final online publication date for the Annual Review of Microbiology, Volume 77 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  5. The extracellular matrix (ECM) is a complex, hierarchical material containing structural and bioactive components. This complexity makes decoupling the effects of biomechanical properties and cell-matrix interactions difficult, especially when studying cellular processes in a 3D environment. Matrix mechanics and cell adhesion are both known regulators of specific cellular processes such as stem cell proliferation and differentiation. However, more information is required about how such variables impact various neural lineages that could, upon transplantation, therapeutically improve neural function after a central nervous system injury or disease. Rapidly Assembling Pentapeptides for Injectable Delivery (RAPID) hydrogels are one biomaterial approach to meet these goals, consisting of a family of peptide sequences that assemble into physical hydrogels in physiological media. In this study, we studied our previously reported supramolecularly-assembling RAPID hydrogels functionalized with the ECM-derived cell-adhesive peptide ligands RGD, IKVAV, and YIGSR. Using molecular dynamics simulations and experimental rheology, we demonstrated that these integrin-binding ligands at physiological concentrations (3–12 mm) did not impact the assembly of the KYFIL peptide system. In simulations, molecular measures of assembly such as hydrogen bonding and pi-pi interactions appeared unaffected by cell-adhesion sequence or concentration. Visualizations of clustering and analysis of solvent-accessible surface area indicated that the integrin-binding domains remained exposed. KYFIL or AYFIL hydrogels containing 3 mm of integrin-binding domains resulted in mechanical properties consistent with their non-functionalized equivalents. This strategy of doping RAPID gels with cell-adhesion sequences allows for the precise tuning of peptide ligand concentration, independent of the rheological properties. The controllability of the RAPID hydrogel system provides an opportunity to investigate the effect of integrin-binding interactions on encapsulated neural cells to discern how hydrogel microenvironment impacts growth, maturation, or differentiation.

     
    more » « less