skip to main content


Title: Energy efficient downlink massive MIMO: Is 1-bit quantization a solution ?
Massive MIMO aims to build wireless base stations with hundreds of coherently operating antennas serving tens of single antenna users in order to improve both the transmission capacity by a factor 10-50 and the energy-efficiency trade-off by up to a thousand times. Pre-coding at the base station has been proposed to efficiently implement digital beamforming. It implies a high signal dynamic range and therefore a power backoff resulting in less energy-efficiency. One-bit quantized Zero-Forcing precoding has been proposed to efficiently handle the RF front-end when the array is implemented with so many antennas. In this paper, we analyze the energy-efficiency of the quantized Zero-Forcing precoded systems for a large number of users and a massive MIMO base station.  more » « less
Award ID(s):
1703635
NSF-PAR ID:
10155032
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proc. 16th International Symposium on Wireless Communication Systems (ISWCS)
Page Range / eLocation ID:
198 to 202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The large number of antennas in massive MIMO systems allows the base station to communicate with multiple users at the same time and frequency resource with multi-user beamforming. However, highly correlated user channels could drastically impede the spectral efficiency that multi-user beamforming can achieve. As such, it is critical for the base station to schedule a suitable group of users in each time and frequency resource block to achieve maximum spectral efficiency while adhering to fairness constraints among the users. In this paper, we consider the resource scheduling problem for massive MIMO systems with its optimal solution known to be NP-hard. Inspired by recent achievements in deep reinforcement learning (DRL) to solve problems with large action sets, we propose SMART, a dynamic scheduler for massive MIMO based on the state-of-the-art Soft Actor-Critic (SAC) DRL model and the K-Nearest Neighbors (KNN) algorithm. Through comprehensive simulations using realistic massive MIMO channel models as well as real-world datasets from channel measurement experiments, we demonstrate the effectiveness of our proposed model in various channel conditions. Our results show that our proposed model performs very close to the optimal proportionally fair (Opt-PF) scheduler in terms of spectral efficiency and fairness with more than one order of magnitude lower computational complexity in medium network sizes where Opt-PF is computationally feasible. Our results also show the feasibility and high performance of our proposed scheduler in networks with a large number of users and resource blocks. 
    more » « less
  2. The large number of antennas in massive MIMO systems allows the base station to communicate with multiple users at the same time and frequency resource with multi-user beamforming. However, highly correlated user channels could drastically impede the spectral efficiency that multi-user beamforming can achieve. As such, it is critical for the base station to schedule a suitable group of users in each time and frequency resource block to achieve maximum spectral efficiency while adhering to fairness constraints among the users. In this paper, we consider the resource scheduling problem for massive MIMO systems with its optimal solution known to be NP-hard. Inspired by recent achievements in deep reinforcement learning (DRL) to solve problems with large action sets, we propose \name{}, a dynamic scheduler for massive MIMO based on the state-of-the-art Soft Actor-Critic (SAC) DRL model and the K-Nearest Neighbors (KNN) algorithm. Through comprehensive simulations using realistic massive MIMO channel models as well as real-world datasets from channel measurement experiments, we demonstrate the effectiveness of our proposed model in various channel conditions. Our results show that our proposed model performs very close to the optimal proportionally fair (Opt-PF) scheduler in terms of spectral efficiency and fairness with more than one order of magnitude lower computational complexity in medium network sizes where Opt-PF is computationally feasible. Our results also show the feasibility and high performance of our proposed scheduler in networks with a large number of users and resource blocks. 
    more » « less
  3. Channel feedback is essential in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. Unfortunately, prior work on multiuser MIMO has shown that the feedback overhead scales linearly with the number of base station (BS) antennas, which is large in massive MIMO systems. To reduce the feedback overhead, we propose an angle-of-departure (AoD) adaptive subspace codebook for channel feedback in FDD massive MIMO systems. Our key insight is to leverage the observation that path AoDs vary more slowly than the path gains. Within the angle coherence time, by utilizing the constant AoD information, the proposed AoDadaptive subspace codebook is able to quantize the channel vector in a more accurate way. From the performance analysis, we show that the feedback overhead of the proposed codebook only scales linearly with a small number of dominant (path) AoDs instead of the large number of BS antennas. Moreover, we compare the proposed quantized feedback technique using the AoD-adaptive subspace codebook with a comparable analog feedback method. Extensive simulations show that the proposed AoD-adaptive subspace codebook achieves good channel feedback quality, while requiring low overhead. 
    more » « less
  4. Abstract

    User subset selection requires full downlink channel state information to realize effective multi-user beamforming in frequency-division duplexing (FDD) massive multi-input multi-output (MIMO) systems. However, the channel estimation overhead scales with the number of users in FDD systems. In this paper, we propose a novel propagation domain-based user selection scheme, labeled aszero-measurement selection, for FDD massive MIMO systems with the aim of reducing the channel estimation overhead that scales with the number of users. The key idea is to infer downlink user channel norm and inter-user channel correlation from uplink channel in the propagation domain. In zero-measurement selection, the base-station performs downlink user selection before any downlink channel estimation. As a result, the downlink channel estimation overhead for both user selection and beamforming is independent of the total number of users. Then, we evaluate zero-measurement selection with both measured and simulated channels. The results show that zero-measurement selection achieves up to 92.5% weighted sum rate of genie-aided user selection on the average and scales well with both the number of base-station antennas and the number of users. We also employ simulated channels for further performance validation, and the numerical results yield similar observations as the experimental findings.

     
    more » « less
  5. Coarsely quantized MIMO signalling methods have gained popularity in the recent developments of massive MIMO as they open up opportunities for massive MIMO implementation using cheap and power-efficient radio-frequency front-ends. This paper presents a new one-bit MIMO precoding approach using spatial Sigma-Delta (∑Δ) modulation. In previous one-bit MIMO precoding research, one mainly focuses on using optimization to tackle the difficult binary signal optimization problem that arise from the precoding design. Our approach attempts a different route. Assuming angular MIMO channels, we apply ∑Δ modulation—a classical concept in analog-to-digital conversion of temporal signals—in space. The resulting ∑Δ precoding approach has two main advantages: First, we no longer need to deal with binary optimization in ∑Δ precoding design. Particularly, the binary signal restriction is replaced by convex signal amplitude constraints. Second, the impact of the quantization error can be well controlled via modulator design and under appropriate operating conditions. Through symbol error probability analysis, we reveal that the very large number of antennas in massive MIMO provides favorable operating conditions for ∑Δ precoding. In addition, we develop a new ∑Δ modulation architecture that is capable of adapting the channel to achieve nearly zero quantization error for a targeted user. Furthermore, we consider multi-user ∑Δ precoding using the zero-forcing and symbol-level precoding schemes. These two ∑Δ precoding schemes perform considerably better than their direct one-bit quantized counterparts, as simulation results show. 
    more » « less