We develop a set of tools for doing computations in and of (partially) wrapped Fukaya categories. In particular, we prove (1) a descent (cosheaf) property for the wrapped Fukaya category with respect to so-called Weinstein sectorial coverings and (2) that the partially wrapped Fukaya category of a Weinstein manifold with respect to a mostly Legendrian stop is generated by the cocores of the critical handles and the linking disks to the stop. We also prove (3) a ‘stop removal equals localization’ result, and (4) that the Fukaya–Seidel category of a Lefschetz fibration with Liouville fiber is generated by the Lefschetz thimbles. These results are derived from three main ingredients, also of independent use: (5) a Künneth formula (6) an exact triangle in the Fukaya category associated to wrapping a Lagrangian through a Legendrian stop at infinity and (7) a geometric criterion for when a pushforward functor between wrapped Fukaya categories of Liouville sectors is fully faithful.
more »
« less
Covariantly functorial wrapped Floer theory on Liouville sectors
We introduce a class of Liouville manifolds with boundary which we call Liouville sectors. We define the wrapped Fukaya category, symplectic cohomology, and the open-closed map for Liouville sectors, and we show that these invariants are covariantly functorial with respect to inclusions of Liouville sectors. From this foundational setup, a local-to-global principle for Abouzaid’s generation criterion follows.
more »
« less
- PAR ID:
- 10155034
- Date Published:
- Journal Name:
- Publications mathématiques de l'IHÉS
- ISSN:
- 0073-8301
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract We investigate the underlying quantum group symmetry of 2d Liouville and dilaton gravity models, both consolidating known results and extending them to the cases with $$ \mathcal{N} $$ N = 1 supersymmetry. We first calculate the mixed parabolic representation matrix element (or Whittaker function) of U q ( $$ \mathfrak{sl} $$ sl (2 , ℝ)) and review its applications to Liouville gravity. We then derive the corresponding matrix element for U q ( $$ \mathfrak{osp} $$ osp (1 | 2 , ℝ)) and apply it to explain structural features of $$ \mathcal{N} $$ N = 1 Liouville supergravity. We show that this matrix element has the following properties: (1) its q → 1 limit is the classical OSp + (1 | 2 , ℝ) Whittaker function, (2) it yields the Plancherel measure as the density of black hole states in $$ \mathcal{N} $$ N = 1 Liouville supergravity, and (3) it leads to 3 j -symbols that match with the coupling of boundary vertex operators to the gravitational states as appropriate for $$ \mathcal{N} $$ N = 1 Liouville supergravity. This object should likewise be of interest in the context of integrability of supersymmetric relativistic Toda chains. We furthermore relate Liouville (super)gravity to dilaton (super)gravity with a hyperbolic sine (pre)potential. We do so by showing that the quantization of the target space Poisson structure in the (graded) Poisson sigma model description leads directly to the quantum group U q ( $$ \mathfrak{sl} $$ sl (2 , ℝ)) or the quantum supergroup U q ( $$ \mathfrak{osp} $$ osp (1 | 2 , ℝ)).more » « less
-
A<sc>bstract</sc> We study 3d quantum gravity with two asymptotically anti-de Sitter regions, in particular, using its relation with coupled Alekseev-Shatashvili theories and Liouville theory. Expressions for the Hartle-Hawking state, thermal 2n-point functions, torus wormhole correlators and Wheeler-DeWitt wavefunctions in different bases are obtained using the ZZ boundary states in Liouville theory. Exact results in 2d Jackiw-Teitelboim (JT) gravity are uplifted to 3d gravity, with two copies of Liouville theory in 3d gravity playing a similar role as Schwarzian theory in JT gravity. The connection between 3d gravity and the Liouville ZZ boundary states are manifested by viewing BTZ black holes as Maldacena-Maoz wormholes, with the two wormhole boundaries glued along the ZZ boundaries. In this work, we also study the factorization problem of the Hartle-Hawking state in 3d gravity. With the relevant defect operator that imposes the necessary topological constraint for contractibility, the trace formula in gravity is modified in computing the entanglement entropy. This trace matches with the one from von Neumann algebra considerations, further reproducing the Bekenstein-Hawking area formula from entanglement entropy. Lastly, we propose a calculation for off-shell geometrical quantities that are responsible for the ramp behavior in the late time two-point functions, which follows from the understanding of the Liouville FZZT boundary states in the context of 3d gravity, and the identification between Verlinde loop operators in Liouville theory and “baby universe” operators in 3d gravity.more » « less
-
We propose a description of the gluon scattering amplitudes as the inverse Mellin transforms of the conformal correlators of light operators in two-dimensional Liouville theory tensored with WZW-like chiral currents on the celestial sphere. The dimensions of operators are Mellin dual to gluon light cone energies while their positions are determined by the gluon momentum directions. Tree-level approximation in Yang-Mills theory corresponds to the semiclassical limit of Liouville theory. By comparing subleading corrections, we find b^2=(8π^2)^{−1}b_0g^2(M), where b is the Liouville coupling constant, g(M) is the Yang Mills coupling at the renormalization scale M and b_0 is the one-loop coefficient of the Yang-Mills beta function.more » « less
-
We have developed a Liouville partial-differential-equation (PDE)-based method for computing complex-valued eikonals in real phase space in the multivalued sense in attenuating media with frequency-independent qualify factors, where the new method computes the real and imaginary parts of the complex-valued eikonal in two steps by solving Liouville equations in real phase space. Because the earth is composed of attenuating materials, seismic waves usually attenuate so that seismic data processing calls for properly treating the resulting energy losses and phase distortions of wave propagation. In the regime of high-frequency asymptotics, the complex-valued eikonal is one essential ingredient for describing wave propagation in attenuating media because this unique quantity summarizes two wave properties into one function: Its real part describes the wave kinematics and its imaginary part captures the effects of phase dispersion and amplitude attenuation. Because some popular ordinary-differential-equation (ODE)-based ray-tracing methods for computing complex-valued eikonals in real space distribute the eikonal function irregularly in real space, we are motivated to develop PDE-based Eulerian methods for computing such complex-valued eikonals in real space on regular meshes. Therefore, we solved novel paraxial Liouville PDEs in real phase space so that we can compute the real and imaginary parts of the complex-valued eikonal in the multivalued sense on regular meshes. We call the resulting method the Liouville PDE method for complex-valued multivalued eikonals in attenuating media; moreover, this new method provides a unified framework for Eulerianizing several popular approximate real-space ray-tracing methods for complex-valued eikonals, such as viscoacoustic ray tracing, real viscoelastic ray tracing, and real elastic ray tracing. In addition, we also provide Liouville PDE formulations for computing multivalued ray amplitudes in a weakly viscoacoustic medium. Numerical examples, including a synthetic gas-cloud model, demonstrate that our methods yield highly accurate complex-valued eikonals in the multivalued sense.more » « less
An official website of the United States government

