skip to main content

Title: Large-Eddy Simulation of Conditionally Neutral Boundary Layers: A Mesh Resolution Sensitivity Study

Large-eddy simulation (LES) is used to model turbulent winds in a nominally neutral atmospheric boundary layer at varying mesh resolutions. The boundary layer is driven by wind shear with zero surface heat flux and is capped by a stable inversion. Because of entrainment the boundary layer is in a weakly stably stratified regime. The simulations use meshes varying from 1282× 64 to 10242× 512 grid points in a fixed computational domain of size (2560, 2560, 896) m. The subgrid-scale (SGS) parameterizations used in the LES vary with the mesh spacing. Low-order statistics, spectra, and structure functions are compared on the different meshes and are used to assess grid convergence in the simulations. As expected, grid convergence is primarily achieved in the middle of the boundary layer where there is scale separation between the energy-containing and dissipative eddies. Near the surface second-order statistics do not converge on the meshes studied. The analysis also highlights differences between one-dimensional and two-dimensional velocity spectra; differences are attributed to sampling errors associated with aligning the horizontal coordinates with the vertically veering mean wind direction. Higher-order structure functions reveal non-Gaussian statistics on all scales, but are highly dependent on the mesh resolution. A generalized logarithmic law and a k−1spectral scaling regime are identified with mesh-dependent parameters in agreement with previously published results.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Page Range / eLocation ID:
p. 1969-1991
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We revisit the longstanding problem of grid sensitivity, i.e., the lack of grid convergence in large-eddy simulations (LES) of the stable boundary layer. We use a comprehensive set of LES of the well-known Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study 1 (GABLS1) case with varying grid spacings between 12.5 m and 1 m to investigate several physical processes and numerical features that are possible causes of grid sensitivity. Our results demonstrate that there are two resolution regimes in which grid sensitivity manifests differently. We find that changing the numerical advection schemes and the subgrid-scale models alters the simulation results, but the options tested do not fully address the grid-sensitivity issue. Moreover, sensitivity runs suggest that the surface boundary condition and the interaction of the surface with the near-surface flow, as well as the mixing with the free atmosphere, are unlikely to be the causes of the observed grid sensitivity. One interesting finding is that the grid sensitivity in the fine grid-spacing regime (grid spacings$$\le 2\,\mathrm{m}$$2m) is closely related to the reduction in the energy content of large-scale turbulence, leading to less turbulence kinetic energy and hence lower boundary-layer heights. The present work demonstrates that there is still an urgent need to address this grid-sensitivity issue in order to perform reliable LES of the stable boundary layer.

    more » « less
  2. The surface wind structure and vertical turbulent transport processes in the eyewall of hurricane Isabel (2003) are investigated using six large-eddy simulations (LESs) with different horizontal grid spacing and three-dimensional (3D) sub-grid scale (SGS) turbulent mixing models and a convection permitting simulation that uses a coarser grid spacing and one-dimensional vertical turbulent mixing scheme. The mean radius-height distribution of storm tangential wind and radial flow, vertical velocity structure, and turbulent kinetic energy and momentum fluxes in the boundary layer generated by LESs are consistent with those derived from historical dropsonde composites, Doppler radar, and aircraft measurements. Unlike the convection permitting simulation that produces storm wind fields lacking small-scale disturbances, all LESs are able to produce sub-kilometer and kilometer scale eddy circulations in the eyewall. The inter-LES differences generally reduce with the decrease of model grid spacing. At 100-m horizontal grid spacing, the vertical momentum fluxes induced by the model-resolved eddies and the associated eddy exchange coefficients in the eyewall simulated by the LESs with different 3D SGS mixing schemes are fairly consistent. Although with uncertainties, the decomposition in terms of eddy scales suggests that sub-kilometer eddies are mainly responsible for the vertical turbulent transport within the boundary layer (~1 km depth following the conventional definition) whereas eddies greater than 1 km become the dominant contributors to the vertical momentum transport above the boundary layer in the eyewall. The strong dependence of vertical turbulent transport on eddy scales suggests that the vertical turbulent mixing parameterization in mesoscale simulations of tropical cyclones is ultimately a scale-sensitive problem. 
    more » « less
  3. Abstract

    While GCM horizontal resolution has received the majority of scale improvements in recent years, ample evidence suggests that a model’s vertical resolution exerts a strong control on its ability to accurately simulate the physics of the marine boundary layer. Here we show that, regardless of parameter tuning, the ability of a single-column model (SCM) to simulate the subtropical marine boundary layer improves when its vertical resolution is improved. We introduce a novel objective tuning technique to optimize the parameters of an SCM against profiles of temperature and moisture and their turbulent fluxes, horizontal winds, cloud water, and rainwater from large-eddy simulations (LES). We use this method to identify optimal parameters for simulating marine stratocumulus and shallow cumulus. The novel tuning method utilizes an objective performance metric that accounts for the uncertainty in the LES output, including the covariability between model variables. Optimization is performed independently for different vertical grid spacings and value of time step, ranging from coarse scales often used in current global models (120 m, 180 s) to fine scales often used in parameterization development and large-eddy simulations (10 m, 15 s). Uncertainty-weighted disagreement between the SCM and LES decreases by a factor of ∼5 when vertical grid spacing is improved from 120 to 10 m, with time step reductions being of secondary importance. Model performance is shown to converge at a vertical grid spacing of 20 m, with further refinements to 10 m leading to little further improvement.

    Significance Statement

    In successive generations of computer models that simulate Earth’s atmosphere, improvements have been mainly accomplished by reducing the horizontal sizes of discretized grid boxes, while the vertical grid spacing has seen comparatively lesser refinements. Here we advocate for additional attention to be paid to the number of vertical layers in these models, especially in the model layers closest to Earth’s surface where climatologically important marine stratocumulus and shallow cumulus clouds reside. Our experiments show that the ability of a one-dimensional model to represent physical processes important to these clouds is strongly dependent on the model’s vertical grid spacing.

    more » « less
  4. Abstract

    Mesoscale climate models provide indispensable tools to understand land‐atmosphere interactions over urban regions. However, uncertainties in urban canopy parameters (UCPs) and parameterization schemes lead to degraded representation of the drag effect in complex built terrains. In particular, for the widely applied single‐layer urban canopy model (SLUCM) coupled with the Weather Research and Forecasting (WRF) model, near‐surface horizontal wind speed is known to be overestimated systematically. In this study, idealized large eddy simulations (LES) and WRF‐SLUCM simulations are conducted to study the separate effect of UCPs and aerodynamic parameterization on atmospheric boundary layer processes and rainfall variabilities in Phoenix, Arizona. For LES that explicitly resolves surface geometry, significant differences between three‐dimensional (3D) versus two‐dimensional (2D) representation of urban morphology are found in the surface layer and above. When surface drag is parameterized following SLUCM, surface morphologies have little impacts on the mean momentum transfer. WRF‐SLUCM simulation results, incorporated with 3D urban morphology data, indicate that simply refining the frontal area index will reduce the surface drag, which further amplifies the systematic positive bias of SLUCM in predicting horizontal wind speed. Replacing the drag parameterization in SLUCM by LES‐based aerodynamic parameters has evident impacts on near‐surface wind speed. The impact of urban roughness representation becomes the most evident during rainfall periods, due to the important role of surface drag in dictating moisture convergence. Our study underlines that apart from intensive efforts in obtaining detailed UCPs, it is also critical to enhance the urban momentum exchange parameterization schemes.

    more » « less
  5. The question of at what resolution the large eddy simulations (LESs) of a tropical cyclone (TC) high wind area may converge largely remains unanswered. To address this issue, LESs with five resolutions of 300 m, 100 m, 60 m, 33 m, and 20 m are performed in this study to simulate a high wind area near the radius of maximum wind of Typhoon Chanthu (2021) using the Weather Research and Forecasting (WRF) model. The results show that, for a limited area LES, model grid resolution may alter the local turbulence structure to generate significantly different extreme values of temperature, moisture, and winds, but it only has a marginal impact on the median values of these variables throughout the vertical column. All simulations are able to capture the turbulent roll vortices in the TC boundary layer, but the structure and intensity of the rolls vary substantially in different resolution simulations. Local hectometer-scale eddies with vertical velocities exceeding 10 m s−1 are only observed in the 20 m resolution simulation but not in the coarser resolution simulations. The ratio of the resolved turbulent momentum fluxes and turbulent kinetic energies (TKEs) to the total momentum fluxes and TKEs appears to show some convergence of LESs when the grid resolution reaches 100 m or finer, suggesting that it is an acceptable grid resolution for LES applications in TC simulations. 
    more » « less