skip to main content


Title: Large-Eddy Simulation of Conditionally Neutral Boundary Layers: A Mesh Resolution Sensitivity Study

Large-eddy simulation (LES) is used to model turbulent winds in a nominally neutral atmospheric boundary layer at varying mesh resolutions. The boundary layer is driven by wind shear with zero surface heat flux and is capped by a stable inversion. Because of entrainment the boundary layer is in a weakly stably stratified regime. The simulations use meshes varying from 1282× 64 to 10242× 512 grid points in a fixed computational domain of size (2560, 2560, 896) m. The subgrid-scale (SGS) parameterizations used in the LES vary with the mesh spacing. Low-order statistics, spectra, and structure functions are compared on the different meshes and are used to assess grid convergence in the simulations. As expected, grid convergence is primarily achieved in the middle of the boundary layer where there is scale separation between the energy-containing and dissipative eddies. Near the surface second-order statistics do not converge on the meshes studied. The analysis also highlights differences between one-dimensional and two-dimensional velocity spectra; differences are attributed to sampling errors associated with aligning the horizontal coordinates with the vertically veering mean wind direction. Higher-order structure functions reveal non-Gaussian statistics on all scales, but are highly dependent on the mesh resolution. A generalized logarithmic law and a k−1spectral scaling regime are identified with mesh-dependent parameters in agreement with previously published results.

 
more » « less
PAR ID:
10155294
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
77
Issue:
6
ISSN:
0022-4928
Page Range / eLocation ID:
p. 1969-1991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, we conduct a parametric analysis to evaluate the sensitivities of wall-modeled large-eddy simulation (LES) with respect to subgrid-scale (SGS) models, mesh resolution, wall boundary conditions and mesh anisotropy. While such investigations have been conducted for attached/flat-plate flow configurations, systematic studies specifically targeting turbulent flows with separation are notably sparse. To bridge this gap, our study focuses on the flow over a two-dimensional Gaussian-shaped bump at a moderately high Reynolds number, which involves smooth-body separation of a turbulent boundary layer under pressure-gradient and surface- curvature effects. In the simulations, the no-slip condition at the wall is replaced by three different forms of boundary condition based on the thin boundary layer equations and the mean wall-shear stress from high-fidelity numerical simulation to avoid the additional complexity of modeling the wall-shear stress. Various statistics, including the mean separation bubble size, mean velocity profile, and dissipation from SGS model, are compared and analyzed. The results reveal that capturing the separation bubble strongly depends on the choice of SGS model. While simulations approach grid convergence with resolutions nearing those of wall-resolved LES meshes, above this limit, the LES predictions exhibit intricate sensitivities to mesh resolution. Furthermore, both wall boundary conditions and the anisotropy of mesh cells exert discernible impacts on the turbulent flow predictions, yet the magnitudes of these impacts vary based on the specific SGS model chosen for the simulation. 
    more » « less
  2. Abstract

    We revisit the longstanding problem of grid sensitivity, i.e., the lack of grid convergence in large-eddy simulations (LES) of the stable boundary layer. We use a comprehensive set of LES of the well-known Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study 1 (GABLS1) case with varying grid spacings between 12.5 m and 1 m to investigate several physical processes and numerical features that are possible causes of grid sensitivity. Our results demonstrate that there are two resolution regimes in which grid sensitivity manifests differently. We find that changing the numerical advection schemes and the subgrid-scale models alters the simulation results, but the options tested do not fully address the grid-sensitivity issue. Moreover, sensitivity runs suggest that the surface boundary condition and the interaction of the surface with the near-surface flow, as well as the mixing with the free atmosphere, are unlikely to be the causes of the observed grid sensitivity. One interesting finding is that the grid sensitivity in the fine grid-spacing regime (grid spacings$$\le 2\,\mathrm{m}$$2m) is closely related to the reduction in the energy content of large-scale turbulence, leading to less turbulence kinetic energy and hence lower boundary-layer heights. The present work demonstrates that there is still an urgent need to address this grid-sensitivity issue in order to perform reliable LES of the stable boundary layer.

     
    more » « less
  3. The surface wind structure and vertical turbulent transport processes in the eyewall of hurricane Isabel (2003) are investigated using six large-eddy simulations (LESs) with different horizontal grid spacing and three-dimensional (3D) sub-grid scale (SGS) turbulent mixing models and a convection permitting simulation that uses a coarser grid spacing and one-dimensional vertical turbulent mixing scheme. The mean radius-height distribution of storm tangential wind and radial flow, vertical velocity structure, and turbulent kinetic energy and momentum fluxes in the boundary layer generated by LESs are consistent with those derived from historical dropsonde composites, Doppler radar, and aircraft measurements. Unlike the convection permitting simulation that produces storm wind fields lacking small-scale disturbances, all LESs are able to produce sub-kilometer and kilometer scale eddy circulations in the eyewall. The inter-LES differences generally reduce with the decrease of model grid spacing. At 100-m horizontal grid spacing, the vertical momentum fluxes induced by the model-resolved eddies and the associated eddy exchange coefficients in the eyewall simulated by the LESs with different 3D SGS mixing schemes are fairly consistent. Although with uncertainties, the decomposition in terms of eddy scales suggests that sub-kilometer eddies are mainly responsible for the vertical turbulent transport within the boundary layer (~1 km depth following the conventional definition) whereas eddies greater than 1 km become the dominant contributors to the vertical momentum transport above the boundary layer in the eyewall. The strong dependence of vertical turbulent transport on eddy scales suggests that the vertical turbulent mixing parameterization in mesoscale simulations of tropical cyclones is ultimately a scale-sensitive problem. 
    more » « less
  4. Abstract

    Mesoscale climate models provide indispensable tools to understand land‐atmosphere interactions over urban regions. However, uncertainties in urban canopy parameters (UCPs) and parameterization schemes lead to degraded representation of the drag effect in complex built terrains. In particular, for the widely applied single‐layer urban canopy model (SLUCM) coupled with the Weather Research and Forecasting (WRF) model, near‐surface horizontal wind speed is known to be overestimated systematically. In this study, idealized large eddy simulations (LES) and WRF‐SLUCM simulations are conducted to study the separate effect of UCPs and aerodynamic parameterization on atmospheric boundary layer processes and rainfall variabilities in Phoenix, Arizona. For LES that explicitly resolves surface geometry, significant differences between three‐dimensional (3D) versus two‐dimensional (2D) representation of urban morphology are found in the surface layer and above. When surface drag is parameterized following SLUCM, surface morphologies have little impacts on the mean momentum transfer. WRF‐SLUCM simulation results, incorporated with 3D urban morphology data, indicate that simply refining the frontal area index will reduce the surface drag, which further amplifies the systematic positive bias of SLUCM in predicting horizontal wind speed. Replacing the drag parameterization in SLUCM by LES‐based aerodynamic parameters has evident impacts on near‐surface wind speed. The impact of urban roughness representation becomes the most evident during rainfall periods, due to the important role of surface drag in dictating moisture convergence. Our study underlines that apart from intensive efforts in obtaining detailed UCPs, it is also critical to enhance the urban momentum exchange parameterization schemes.

     
    more » « less
  5. It is well known that convergence rate of finite element approximation is suboptimal in theL2norm for solving biharmonic equations whenP2orQ2element is used. The goal of this paper is to derive a weak Galerkin (WG)P2element with theL2optimal convergence rate by assuming the exact solution sufficiently smooth. In addition, our new WG finite element method can be applied to general mesh such as hybrid mesh, polygonal mesh or mesh with hanging node. The numerical experiments have been conducted on different meshes including hybrid meshes with mixed of pentagon and rectangle and mixed of hexagon and triangle.

     
    more » « less