skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Conjugate Addition Approach to Diazo‐Containing Scaffolds with β Quaternary Centers
Abstract Structurally complex diazo‐containing scaffolds are formed by conjugate addition to vinyl diazonium salts. The electrophile, a little studied α‐diazonium‐α,β‐unsaturated carbonyl compound, is formed at low temperature under mild conditions by treating β‐hydroxy‐α‐diazo carbonyls with Sc(OTf)3. Conjugate addition occurs selectively at the 3‐position of indole to give α‐diazo‐β‐indole carbonyls, and enoxy silanes react to give 2‐diazo‐1,4‐dicarbonyl products. These reactions result in the formation of tertiary and quaternary centers, and give products that would be otherwise difficult to form. Importantly, the diazo functional group is retained within the molecule for future manipulation. Treating an α‐diazo ester indole addition product with Rh2(OAc)4caused a rearrangement to occur to give a 2‐(1H‐indol‐3‐yl)‐2‐enoate. In the case of diazo ketone compounds, this shift occurred spontaneously on prolonged exposure to the Lewis acidic reaction conditions.  more » « less
Award ID(s):
1665113
PAR ID:
10156178
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
31
ISSN:
1433-7851
Page Range / eLocation ID:
p. 12827-12831
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Lewis acid mediated reaction of allyltributylstannane compounds with β-hydroxy-α-diazo carbonyls gives β-allyl-α-diazo carbonyl products in good yields. This reaction proceeds via a vinyl diazonium ion intermediate which is intercepted by the allylstannane nucleophile. Importantly, the diazo functional group is retained over the course of the reaction to give diazo-containing scaffolds with increased molecular complexity. Methallyltrimethylsilane also serves as a functional allyl transfer reagent in this reaction. 
    more » « less
  2. Abstract Herein, a general approach to intermolecular benzylic C(sp3)−H alkylation of methyl‐substituted arenes is reported using metal carbenes derived fromN‐aryl‐α‐diazo‐β‐amidoesters and dirhodium catalysts. Alkylated products were formed in up to 81 % yield with demonstrated functional group tolerance, outpacing previous literature. The unique amide‐ester scaffolding can be exploited through various derivatizations for broad synthetic utility and provides a starting point for the development of selectivity rules and reactivity profiles for these intermolecular C(sp3)−H functionalizations. 
    more » « less
  3. Abstract The direct Friedel–Crafts‐type coupling and dedinitrogenation reactions of vinyldiazo compounds with aromatic compounds using a metal‐free strategy are described. This Brønsted acid catalyzed method is efficient for the formation of α‐diazo β‐carbocations (vinyldiazonium ions), vinyl carbocations, and allylic or homoallylic carbocation species via vinyldiazo compounds. By choosing suitable nucleophilic reagents to selectively capture these intermediates, both trisubstituted α,β‐unsaturated esters, β‐indole‐substituted diazo esters, and dienes are obtained with good to high yields and selectivity. Experimental insights implicate a reaction mechanism involving the selective protonation of vinyldiazo compounds and the subsequent release of dinitrogen to form vinyl cations that undergo intramolecular 1,3‐ and 1,4‐ hydride transfer processes as well as fragmentation. 
    more » « less
  4. A substituted donor–acceptor cyclobutenecarboxamide is synthesized with modest enantiocontrol through a chiral copper(I) complex catalyzed [3 + 1]-cycloaddition reaction of α-acyl diphenylsulfur ylides with 3-siloxy-2-diazo-3-butenamides. With a methyl substituent on the 4-position of the 3-butenamide, the cis-vicinal-3,4-disubstituted cyclobutenecarboxamide is formed with >20:1 diastereocontrol. Donor-acceptor 3-methyl-2-siloxycyclopropenecarboxamide is rapidly formed from the reactant enoldiazoamide and undergoes catalytic ring opening to give only the Z-γ-substituted metallo-enolcarbene. Elimination from 3-siloxy-2-diazo-3-pentenamide to form the conjugated 3-siloxy-2,4-pentadienamide is competitive but minimized at low temperature. 
    more » « less
  5. Abstract A general catalytic methodology for the synthesis of pyrazolines from α‐diazo compounds and conjugated alkenes is reported. The direct hydrogen atom transfer (HAT) process of α‐diazo compounds promoted by thetert‐butylperoxy radical generates electrophilic diazomethyl radicals, thereby reversing the reactivity of the carbon atom attached with the diazo group. The regiocontrolled addition of diazomethyl radicals to carbon‐carbon double bonds followed by intramolecular ring closure on the terminal diazo nitrogen and tautomerization affords a diverse set of pyrazolines in good yields with excellent regioselectivity. This strategy overcomes the limitations of electron‐deficient alkenes in traditional dipolar [3+2]‐cycloaddition of α‐diazo compounds with alkenes. Furthermore, the straightforward formation of the diazomethyl radicals provides umpolung reactivity, thus opening new opportunities for the versatile transformations of diazo compounds. 
    more » « less