- PAR ID:
- 10156315
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 22
- Issue:
- 17
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 9664 to 9676
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Fundamental discoveries in electron transfer advance scientific and technological advancements. It is suggested that in plant and bacterial photosynthesis, the primary donor, a chlorophyll or bacteriochlorophyll dimer, forms an initial excited symmetry‐breaking charge transfer state (1CT*) upon photoexcitation that subsequently promotes sequential electron transfer (ET) events. This is unlike monomeric photosensitizer‐bearing donor‐acceptor dyads where ET occurs from the excited donor or acceptor (1D* or1A*). In the present study, we successfully demonstrated the former photochemical event using an excited charge transfer molecule as a donor. Electron‐deficient perylenediimide (PDI) is functionalized with three electron‐rich piperidine entities at the bay positions, resulting in a far‐red emitting CT molecule (DCT). Further, this molecule is covalently linked to another PDI (APDI) carrying no substituents at the bay positions, resulting in wide‐band capturing DCT‐APDIconjugates. Selective excitation of the CT band of DCTin these conjugates leads to an initial1DCT* that undergoes subsequent ET involving APDI,resulting in DCT
+ ‐APDI−charge separation product (k CS~109 s−1). Conversely, when APDIwas directly excited, ultrafast energy transfer (ENT) from1APDI* to DCT(k ENT~1011 s−1) followed by ET from1DCT* to PDI is witnessed. While increasing solvent polarity improvedk CSrates, for a given solvent, the magnitude of thek CSvalues was almost the same, irrespective of the excitation wavelengths. The present findings demonstrate ET from an initial CT state to an acceptor is key to understanding the intricate ET events in complex natural and bacterial photosynthetic systems possessing multiple redox‐ and photoactive entities. -
Efficient photosynthetic energy conversion requires quantitative, light-driven formation of high-energy, charge-separated states. However, energies of high-lying excited states are rarely extracted, in part because the congested density of states in the excited-state manifold leads to rapid deactivation. Conventional photosystem designs promote electron transfer (ET) by polarizing excited donor electron density toward the acceptor (“one-way” ET), a form of positive design. Curiously, negative design strategies that explicitly avoid unwanted side reactions have been underexplored. We report here that electronic polarization of a molecular chromophore can be used as both a positive and negative design element in a light-driven reaction. Intriguingly, prudent engineering of polarized excited states can steer a “U-turn” ET—where the excited electron density of the donor is initially pushed away from the acceptor—to outcompete a conventional one-way ET scheme. We directly compare one-way vs. U-turn ET strategies via a linked donor–acceptor (DA) assembly in which selective optical excitation produces donor excited states polarized either toward or away from the acceptor. Ultrafast spectroscopy of DA pinpoints the importance of realizing donor singlet and triplet excited states that have opposite electronic polarizations to shut down intersystem crossing. These results demonstrate that oppositely polarized electronically excited states can be employed to steer photoexcited states toward useful, high-energy products by routing these excited states away from states that are photosynthetic dead ends.more » « less
-
Abstract Two wide‐band‐capturing donor‐acceptor conjugates featuring bis‐styrylBODIPY and perylenediimide (PDI) have been newly synthesized, and the occurrence of ultrafast excitation transfer from the1PDI* to BODIPY, and a subsequent electron transfer from the1BODIPY* to PDI have been demonstrated. Optical absorption studies revealed panchromatic light capture but offered no evidence of ground‐state interactions between the donor and acceptor entities. Steady‐state fluorescence and excitation spectral recordings provided evidence of singlet‐singlet energy transfer in these dyads, and quenched fluorescence of bis‐styrylBODIPY emission in the dyads suggested additional photo‐events. The facile oxidation of bis‐styrylBODIPY and facile reduction of PDI, establishing their relative roles of electron donor and acceptor, were borne out by electrochemical studies. The electrostatic potential surfaces of the S1and S2states, derived from time‐dependent DFT calculations, supported excited charge transfer in these dyads. Spectro‐electrochemical studies on one‐electron‐oxidized and one‐electron‐reduced dyads and the monomeric precursor compounds were also performed in a thin‐layer optical cell under corresponding applied potentials. From this study, both bis‐styrylBODIPY⋅
+ and PDI⋅−could be spectrally characterizes and were subsequently used in characterizing the electron‐transfer products. Finally, pump–probe spectral studies were performed in dichlorobenzene under selective PDI and bis‐styrylBODIPY excitation to secure energy and electron‐transfer evidence. The measured rate constants for energy transfer,k ENT, were in the range of 1011 s−1, while the electron transfer rate constants,k ET, were in the range of 1010 s−1, thus highlighting their potential use in solar energy harvesting and optoelectronic applications. -
null (Ed.)Photoinduced electron transfer (ET) between electron donor (dimethylaniline) and acceptor (N-isopropyl-1,8-napthalimide) covalently linked by ethyne bridge is investigated by a mid-IR transient absorption spectroscopy and TD-DFT computations. We found that electronic and vibrational properties of the complex, including ET rate, depends strongly on the D-A torsion angle.more » « less