skip to main content


Title: Mitochondrial DNA Variation and Selfish Propagation Following Experimental Bottlenecking in Two Distantly Related Caenorhabditis briggsae Isolates
Understanding mitochondrial DNA (mtDNA) evolution and inheritance has broad implications for animal speciation and human disease models. However, few natural models exist that can simultaneously represent mtDNA transmission bias, mutation, and copy number variation. Certain isolates of the nematode Caenorhabditis briggsae harbor large, naturally-occurring mtDNA deletions of several hundred basepairs affecting the NADH dehydrogenase subunit 5 (nduo-5) gene that can be functionally detrimental. These deletion variants can behave as selfish DNA elements under genetic drift conditions, but whether all of these large deletion variants are transmitted in the same preferential manner remains unclear. In addition, the degree to which transgenerational mtDNA evolution profiles are shared between isolates that differ in their propensity to accumulate the nduo-5 deletion is also unclear. We address these knowledge gaps by experimentally bottlenecking two isolates of C. briggsae with different nduo-5 deletion frequencies for up to 50 generations and performing total DNA sequencing to identify mtDNA variation. We observed multiple mutation profile differences and similarities between C. briggsae isolates, a potentially species-specific pattern of copy number dysregulation, and some evidence for genetic hitchhiking in the deletion-bearing isolate. Our results further support C. briggsae as a practical model for characterizing naturally-occurring mtgenome variation and contribute to the understanding of how mtgenome variation persists in animal populations and how it presents in mitochondrial disease states.  more » « less
Award ID(s):
1817993
NSF-PAR ID:
10156428
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Genes
Volume:
11
Issue:
1
ISSN:
2073-4425
Page Range / eLocation ID:
77
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Despite wide-ranging implications of selfish mitochondrial DNA (mtDNA) elements for human disease and topics in evolutionary biology (e.g., speciation), the forces controlling their formation, age-related accumulation, and offspring transmission remain largely unknown. Selfish mtDNA poses a significant challenge to genome integrity, mitochondrial function, and organismal fitness. For instance, numerous human diseases are associated with mtDNA mutations; however, few genetic systems can simultaneously represent pathogenic mitochondrial genome evolution and inheritance. The nematode Caenorhabditis briggsae is one such system. Natural C. briggsae isolates harbor varying levels of a large-scale deletion affecting the mitochondrial nduo-5 gene, termed nad5Δ. A subset of these isolates contains putative compensatory mutations that may reduce the risk of deletion formation. We studied the dynamics of nad5Δ heteroplasmy levels during animal development and transmission from mothers to offspring in genetically diverse C. briggsae natural isolates. Results support previous work demonstrating that nad5Δ is a selfish element and that heteroplasmy levels of this deletion can be quite plastic, exhibiting high degrees of inter-family variability and divergence between generations. The latter is consistent with a mitochondrial bottleneck effect, and contrasts with previous findings from a laboratory-derived model uaDf5 mtDNA deletion in C. elegans. However, we also found evidence for among-isolate differences in the ability to limit nad5Δ accumulation, the pattern of which suggested that forces other than the compensatory mutations are important in protecting individuals and populations from rampant mtDNA deletion expansion over short time scales.

     
    more » « less
  2. Abstract

    DNA mismatch repair (MMR), an evolutionarily conserved repair pathway shared by prokaryotic and eukaryotic species alike, influences molecular evolution by detecting and correcting mismatches, thereby protecting genetic fidelity, reducing the mutational load, and preventing lethality. Herein we conduct the first genome-wide evaluation of the alterations to the mutation rate and spectrum under impaired activity of the MutSα homolog, msh-2, in Caenorhabditis elegans male–female fog-2(lf) lines. We performed mutation accumulation (MA) under RNAi-induced knockdown of msh-2 for up to 50 generations, followed by next-generation sequencing of 19 MA lines and the ancestral control. msh-2 impairment in the male–female background substantially increased the frequency of nuclear base substitutions (∼23×) and small indels (∼328×) relative to wildtype hermaphrodites. However, we observed no increase in the mutation rates of mtDNA, and copy-number changes of single-copy genes. There was a marked increase in copy-number variation of rDNA genes under MMR impairment. In C. elegans, msh-2 repairs transitions more efficiently than transversions and increases the AT mutational bias relative to wildtype. The local sequence context, including sequence complexity, G + C-content, and flanking bases influenced the mutation rate. The X chromosome exhibited lower substitution and higher indel rates than autosomes, which can either result from sex-specific mutation rates or a nonrandom distribution of mutable sites between chromosomes. Provided the observed difference in mutational pattern is mostly due to MMR impairment, our results indicate that the specificity of MMR varies between taxa, and is more efficient in detecting and repairing small indels in eukaryotes relative to prokaryotes.

     
    more » « less
  3. Abstract

    As the genetic basis of natural and domesticated variation has been described in recent years, a number of hotspot genes have been repeatedly identified as the targets of selection, Heliconius butterflies display a spectacular diversity of pattern variants in the wild and the genetic basis of these patterns has been well-described. Here, we sought to identify the mechanism behind an unusual pattern variant that is instead found in captivity, the ivory mutant, in which all scales on both the wings and body become white or yellow. Using a combination of autozygosity mapping and coverage analysis from 37 captive individuals, we identify a 78-kb deletion at the cortex wing patterning locus, a gene which has been associated with wing pattern evolution in H. melpomene and 10 divergent lepidopteran species. This deletion is undetected among 458 wild Heliconius genomes samples, and its dosage explains both homozygous and heterozygous ivory phenotypes found in captivity. The deletion spans a large 5′ region of the cortex gene that includes a facultative 5′UTR exon detected in larval wing disk transcriptomes. CRISPR mutagenesis of this exon replicates the wing phenotypes from coding knock-outs of cortex, consistent with a functional role of ivory-deleted elements in establishing scale color fate. Population demographics reveal that the stock giving rise to the ivory mutant has a mixed origin from across the wild range of H. melpomene, and supports a scenario where the ivory mutation occurred after the introduction of cortex haplotypes from Ecuador. Homozygotes for the ivory deletion are inviable while heterozygotes are the targets of artificial selection, joining 40 other examples of allelic variants that provide heterozygous advantage in animal populations under artificial selection by fanciers and breeders. Finally, our results highlight the promise of autozygosity and association mapping for identifying the genetic basis of aberrant mutations in captive insect populations.

     
    more » « less
  4. null (Ed.)
    Mutation rate in the nuclear genome differs between sexes, with males contributing more mutations than females to their offspring. The male-biased mutation rates in the nuclear genome is most likely to be driven by a higher number of cell divisions in spermatogenesis than in oogenesis, generating more opportunities for DNA replication errors. However, it remains unknown whether male-biased mutation rates are present in mitochondrial DNA (mtDNA). Although mtDNA is maternally inherited and male mtDNA mutation typically does not contribute to genetic variation in offspring, male mtDNA mutations are critical for male reproductive health. In this study, we measured male mtDNA mutation rate using publicly available whole-genome sequences of single sperm of the freshwater microcrustacean Daphnia pulex . Using a stringent mutation detection pipeline, we found that the male mtDNA mutation rate is 3.32 × 10 −6 per site per generation. All the detected mutations are heteroplasmic base substitutions, with 57% of mutations converting G/C to A/T nucleotides. Consistent with the male-biased mutation in the nuclear genome, the male mtDNA mutation rate in D. pulex is approximately 20 times higher than the female rate per generation. We propose that the elevated mutation rate per generation in male mtDNA is consistent with an increased number of cell divisions during male gametogenesis. 
    more » « less
  5. enetic variation in mitochondrial DNA (mtDNA) provides adaptive potential although the underlying genetic architecture of fitness components within mtDNAs is not known. To dissect functional variation within mtDNAs, we first identified naturally occurring mtDNAs that conferred high or low fitness in Saccharomyces cerevisiae by comparing growth in strains containing identical nuclear genotypes but different mtDNAs. During respiratory growth under temperature and oxidative stress conditions, mitotype effects were largely independent of nuclear genotypes even in the presence of mitonuclear interactions. Recombinant mtDNAs were generated to determine fitness components within high and low fitness mtDNAs. Based on phenotypic distributions of isogenic strains containing recombinant mtDNAs, we found that multiple loci contributed to mitotype fitness differences. These mitochondrial loci interacted in epistatic, non-additive ways in certain environmental conditions. Mito-mito epistasis (i.e. non-additive interactions between mitochondrial loci) influenced fitness in progeny from 4 different crosses, suggesting that mito-mito epistasis is a widespread phenomenon in yeast and other systems with recombining mtDNAs. Furthermore, we found that interruption of coadapted mito-mito interactions produced recombinant mtDNAs with lower fitness. Our results demonstrate that mito-mito epistasis results in functional variation through mitochondrial recombination in fungi, providing modes for adaptive evolution and the generation of mito-mito incompatibilities. 
    more » « less