Quorum sensing is a chemical communication process that bacteria use to coordinate group behaviors. Pseudomonas aeruginosa, an opportunistic pathogen, employs multiple quorum sensing systems to control behaviors including virulence factor production and biofilm formation. One P. aeruginosa quorum-sensing receptor, called RhlR, binds the cognate autoinducer N-butryl homoserine lactone (C4HSL), and the RhlR:C4HSL complex activates transcription of target quorum-sensing genes. Here, we use a genetic screen to identify RhlR mutants that function independently of the autoinducer. The RhlR Y64F W68F V133F triple mutant, which we call RhlR*, exhibits ligand-independent activity in vitro and in vivo. RhlR* can drive wildtype biofilm formation and infection in a nematode animal model. The ability of RhlR* to properly regulate quorum-sensing-controlled genes in vivo depends on the quorum-sensing regulator RsaL keeping RhlR* activity in check. RhlR is known to function together with PqsE to control production of the virulence factor called pyocyanin. Likewise, RhlR* requires PqsE for pyocyanin production in planktonic cultures, however, PqsE is dispensable for RhlR*-driven pyocyanin production on surfaces. Finally, wildtype RhlR protein is not sufficiently stabilized by C4HSL to allow purification. However, wildtype RhlR can be stabilized by the synthetic ligand mBTL (meta bromo-thiolactone) and RhlR* is stable without a ligand. These features enabled purification of the RhlR:mBTL complex and of RhlR* for in vitro examination of their biochemical activities. To our knowledge, this work reports the first RhlR protein purification.
more »
« less
The Antimicrobial Peptide Human Beta-Defensin 2 Inhibits Biofilm Production of Pseudomonas aeruginosa Without Compromising Metabolic Activity
Biofilm production is a key virulence factor that facilitates bacterial colonization on host surfaces and is regulated by complex pathways, including quorum sensing, that also control pigment production, among others. To limit colonization, epithelial cells, as part of the first line of defense, utilize a variety of antimicrobial peptides (AMPs) including defensins. Pore formation is the best investigated mechanism for the bactericidal activity of AMPs. Considering the induction of human beta-defensin 2 (HBD2) secretion to the epithelial surface in response to bacteria and the importance of biofilm in microbial infection, we hypothesized that HBD2 has biofilm inhibitory activity. We assessed the viability and biofilm formation of a pyorubin-producing Pseudomonas aeruginosa strain in the presence and absence of HBD2 in comparison to the highly bactericidal HBD3. At nanomolar concentrations, HBD2 – independent of its chiral state – significantly reduced biofilm formation but not metabolic activity, unlike HBD3, which reduced biofilm and metabolic activity to the same degree. A similar discrepancy between biofilm inhibition and maintenance of metabolic activity was also observed in HBD2 treated Acinetobacter baumannii, another Gram-negative bacterium. There was no evidence for HBD2 interference with the regulation of biofilm production. The expression of biofilm-related genes and the extracellular accumulation of pyorubin pigment, another quorum sensing controlled product, did not differ significantly between HBD2 treated and control bacteria, and in silico modeling did not support direct binding of HBD2 to quorum sensing molecules. However, alterations in the outer membrane protein profile accompanied by surface topology changes, documented by atomic force microscopy, was observed after HBD2 treatment. This suggests that HBD2 induces structural changes that interfere with the transport of biofilm precursors into the extracellular space. Taken together, these data support a novel mechanism of biofilm inhibition by nanomolar concentrations of HBD2 that is independent of biofilm regulatory pathways.
more »
« less
- Award ID(s):
- 1828334
- PAR ID:
- 10156444
- Date Published:
- Journal Name:
- Frontiers in immunology
- ISSN:
- 1664-3224
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Microbial contamination in metalworking systems is a critical problem. This study determined the microbial communities in metalworking fluids (MWFs) from two machining shops and investigated the effect of quorum sensing inhibition (QSI) on biofilm growth. In both operations, biofilm-associated and planktonic microbial communities were dominated by Pseudomonadales (60.2–99.7%). Rapid recolonization was observed even after dumping spent MWFs and meticulous cleaning. Using Pseudomonas aeruginosa PAO1 as a model biofilm organism, patulin (40 µM) and furanone C-30 (75 µM) were identified as effective QSI agents. Both agents had a substantially higher efficacy compared to α-amylase (extracellular polymeric substance degrading enzyme) and reduced biofilm formation by 63% and 76%, respectively, in MWF when compared to untreated controls. Reduced production of putatively identified homoserine lactones and quinoline in MWF treated with QS inhibitors support the effect of QSI on biofilm formation. The results highlight the effectiveness of QSI as a potential strategy to eradicate biofilms in MWFs.more » « less
-
Microbial Primer: LuxR-LuxI Quorum Sensing: This article is part of the Microbial Primer collection.Quorum sensing is a term describing bacterial cell-to-cell communication systems for monitoring and responding to changes in population density. This primer serves as an introduction to the canonical LuxR-LuxI-type quorum sensing circuits common to many species of Gram-negative bacteria. Quorum sensing can synchronize behaviours across a community. Different species employ quorum sensing strategies to control specific behaviours such as bioluminescence, virulence factor production, secondary metabolite production, and biofilm formation.more » « less
-
Quorum sensing is a bacterial communication process whereby bacteria produce, release, and detect extracellular signaling molecules called autoinducers to coordinate collective behaviors. In the pathogen Vibrio cholerae, the quorum-sensing autoinducer 3,5-dimethyl-pyrazin-2-ol (DPO) binds the receptor and transcription factor VqmA. The DPO-VqmA complex activates transcription of vqmR, encoding the VqmR small RNA, which represses genes required for biofilm formation and virulence factor production. Here, we show that VqmA is soluble and properly folded, and activates basal-level transcription of its target vqmR in the absence of DPO. VqmA transcriptional activity is increased in response to increasing concentrations of DPO, allowing VqmA to drive the V. cholerae quorum-sensing transition at high cell densities. We solved the DPO-VqmA crystal structure to 2.0 Å resolution and compared it to existing structures to understand the conformational changes VqmA undergoes upon DNA binding. Analysis of DPO analogs showed that a hydroxyl or carbonyl group at the 2’ position is critical for binding to VqmA. The proposed DPO precursor, a linear molecule, N-alanyl-aminoacetone or Ala-AA, also bound and activated VqmA. Results from site-directed mutagenesis and competitive ligand-binding analyses revealed that DPO and Ala-AA occupy the same binding site. In summary, our structure–function analysis identifies key features required for VqmA activation and DNA binding and establishes that, while VqmA binds two different ligands, VqmA does not require a bound ligand for folding or basal transcriptional activity. However, bound ligand is required for maximal activity.more » « less
-
Bacteria communicate and collectively regulate gene expression using a process called quorum sensing (QS). QS relies on group-wide responses to signal molecules called autoinducers. Here, we show that QS activates a new program of multicellularity in Vibrio cholerae. This program, which we term aggregation, is distinct from the canonical surface-biofilm formation program, which QS represses. Aggregation is induced by autoinducers, occurs rapidly in cell suspensions, and does not require cell-division, features strikingly dissimilar from those characteristic of V. cholerae biofilm formation. Extracellular DNA limits aggregate size, but is not sufficient to drive aggregation. A mutagenesis screen identifies genes required for aggregate formation, revealing proteins involved in V. cholerae intestinal colonization, stress response, and a protein that distinguishes the current V. cholerae pandemic strain from earlier pandemic strains. We suggest that QS-controlled aggregate formation is important for V. cholerae to successfully transit between the marine niche and the human host.more » « less
An official website of the United States government

