skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Template-guided selection of RNA ligands using imine-based dynamic combinatorial chemistry
This study establishes the applicability of imine-based dynamic combinatorial chemistry to discover non-covalent ligands for RNA targets. We elucidate properties underlying the reactivity of arylamines and demonstrate target-guided amplification of tight binders in an amiloride-based dynamic library.  more » « less
Award ID(s):
1750375
PAR ID:
10156548
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
56
Issue:
24
ISSN:
1359-7345
Page Range / eLocation ID:
3555 to 3558
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dynamic protein structures are crucial for deciphering their diverse biological functions. Two-dimensional infrared (2DIR) spectroscopy stands as an ideal tool for tracing rapid conformational evolutions in proteins. However, linking spectral characteristics to dynamic structures poses a formidable challenge. Here, we present a pretrained machine learning model based on 2DIR spectra analysis. This model has learned signal features from approximately 204,300 spectra to establish a “spectrum-structure” correlation, thereby tracing the dynamic conformations of proteins. It excels in accurately predicting the dynamic content changes of various secondary structures and demonstrates universal transferability on real folding trajectories spanning timescales from microseconds to milliseconds. Beyond exceptional predictive performance, the model offers attention-based spectral explanations of dynamic conformational changes. Our 2DIR-based pretrained model is anticipated to provide unique insights into the dynamic structural information of proteins in their native environments. 
    more » « less
  2. This paper presents an attention-based, deep learning framework that converts robot camera frames with dynamic content into static frames to more easily apply simultaneous localization and mapping (SLAM) algorithms. The vast majority of SLAM methods have difficulty in the presence of dynamic objects appearing in the environment and occluding the area being captured by the camera. Despite past attempts to deal with dynamic objects, challenges remain to reconstruct large, occluded areas with complex backgrounds. Our proposed Dynamic-GAN framework employs a generative adversarial network to remove dynamic objects from a scene and inpaint a static image free of dynamic objects. The Dynamic-GAN framework utilizes spatial-temporal transformers, and a novel spatial-temporal loss function. The evaluation of Dynamic-GAN was comprehensively conducted both quantitatively and qualitatively by testing it on benchmark datasets, and on a mobile robot in indoor navigation environments. As people appeared dynamically in close proximity to the robot, results showed that large, feature-rich occluded areas can be accurately reconstructed with our attention-based deep learning framework for dynamic object removal. Through experiments we demonstrate that our proposed algorithm has up to 25% better performance on average as compared to the standard benchmark algorithms. 
    more » « less
  3. In this paper, we present a network-based template for analyzing large-scale dynamic data. Specifically, we present a novel shared-memory parallel algorithm for updating treebased structures, including connected components (CC) and the minimum spanning tree (MST) on dynamic networks. We propose a rooted tree-based data structure to store the edges that are most relevant to the analysis. Our algorithm is based on updating the information stored in this rooted tree.In this paper, we present a network-based template for analyzing large-scale dynamic data. Specifically, we present a novel shared-memory parallel algorithm for updating tree-based structures, including connected components (CC) and the minimum spanning tree (MST) on dynamic networks. We propose a rooted tree-based data structure to store the edges that are most relevant to the analysis. Our algorithm is based on updating the information stored in this rooted tree. 
    more » « less
  4. The da Vinci Research Kit (dVRK) is a teleoperated surgical robotic system. For dynamic simulations and model-based control, the dynamic model of the dVRK is required. We present an open-source dynamic model identification package for the dVRK, capable of modeling the parallelograms, springs, counterweight, and tendon couplings, which are inherent to the dVRK. A convex optimization-based method is used to identify the dynamic parameters of the dVRK subject to physical consistency. Experimental results show the effectiveness of the modeling and the robustness of the package. Although this software package is originally developed for the dVRK, it is feasible to apply it on other similar robots. 
    more » « less
  5. The observability analysis of a time-varying nonlinear dynamic model has recently attracted the attention of power engineers due to its vital role in power system dynamic state estimation. Generally speaking, due to the nonlinearity of the power system dynamic model, the traditional derivative-based observability analysis approaches either rely on the linear approximation to simplify the problem or require a complicated derivation procedure that ignores the uncertainties of the dynamic system model and of the observations represented by stochastic noises. Facing this challenge, we propose a novel polynomial-chaos-based derivative-free observability analysis approach that not only brings a low complexity, but also enables us to quantify the degree of observability by considering the stochastic nature of the dynamic systems. The excellent performances of the proposed method is demonstrated using simulations of a decentralized dynamic state estimation performed on a power system using a synchronous generator model with IEEE-DC1A exciter and a TGOV1 turbine-governor. 
    more » « less